Grade XII Applied Mathematics Worksheet
1. The determinant of a 3×3 matrix (A) is 5. What is the determinant of (3A)?
- 15
- 45
- 135
- None of the above
2. Find the inverse of the matrix ( begin{bmatrix} 2 & 3 \ 1 & 4 end{bmatrix} ).
- ( begin{bmatrix} 4 & -3 \ -1 & 2 end{bmatrix} )
- ( begin{bmatrix} 4 & -1 \ -3 & 2 end{bmatrix} )
- ( begin{bmatrix} 2 & -1 \ 1 & 4 end{bmatrix} )
- Non-invertible
3. What is the principal value of ( arcsin(-1) )?
- (-pi)
- (-frac{pi}{2})
- 0
- (frac{pi}{2})
4. Solve the differential equation ( frac{dy}{dx} + 2y = e^{-x} ).
- (y = Ce^{-2x} + frac{1}{2}e^{-x})
- (y = Ce^{-2x} – e^{-x})
- (y = Ce^{2x} + e^{-x})
- (y = Ce^{2x} – frac{1}{2}e^{-x})
5. Evaluate the integral ( int frac{dx}{x^2 + 1} ).
- (arctan(x) + C)
- (arcsin(x) + C)
- (ln|x| + C)
- (frac{1}{x} + C)
6. Which is the equation of a parabola with focus at (2,3) and directrix y=1?
- ((x-2)^2 = 4(y-2))
- ((y-3)^2 = 8(x-2))
- ((y-2)^2 = 4(x-2))
- ((x-2)^2 = 8(y-3))
7. Calculate the area enclosed by the curve (y=x^3) and the x-axis from x=0 to x=2.
- 4 square units
- 6 square units
- 8 square units
- None of the above
8. What is the volume of the solid obtained by rotating the area between (y=x^2) and (y=x) around the x-axis from x=0 to x=1?
- (frac{pi}{10}) cubic units
- (frac{pi}{30}) cubic units
- (pi) cubic units
- (frac{pi}{15}) cubic units
9. A linear programming problem has an objective function (F = 2x + 3y) to maximize, with constraints (x geq 0), (y geq 0), (x + y leq 10), and (2x + 3y leq 18). The maximum value of (F) is:
- 36
- 30
- 48
- 54
10. The solution set for the inequality (3x – 7 leq 2x + 8) is:
- (x leq 15)
- (x geq 15)
- (x leq -15)
- (x geq -15)