Grade XII Applied Mathematics Practice Questions
1. Which equation represents the eigenvalues of the matrix \( \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \)?
- \(\lambda^2 – 4\lambda + 3 = 0\)
- \(\lambda^2 – 4\lambda + 4 = 0\)
- \(\lambda^2 – 3\lambda + 2 = 0\)
- \(\lambda – 3 = 0\)
2. The area of the region bounded by the curves \( y = x^2 \) and \( y = x \) is:
- 0.1667 square units
- 0.3333 square units
- 0.5 square units
- 1 square unit
3. Solve the linear system using matrix inversion method: \( x + 2y = 5 \) and \( 3x + 4y = 11 \).
- \(x = 1, y = 2\)
- \(x = 2, y = 1.5\)
- \(x = 3, y = 1\)
- \(x = 7, y = -1\)
4. What is the Fourier transform of \( f(t) = e^{-|t|} \)?
- \(\frac{2}{1 + \omega^2}\)
- \(\frac{1}{1 + \omega^2}\)
- \(\frac{2}{\omega^2 – 1}\)
- \(\frac{2\omega}{1 + \omega^2}\)
5. A function \( f(x) \) is defined as \( f(x) = \left\{ \begin{array}{ll} x^2 & \quad x < 1 \\ 2x + 1 & \quad x \geq 1 \end{array} \right. \). Find the limit \( \lim_{x \to 1} f(x) \).
- 1
- 2
- 3
- Does not exist
6. Calculate the derivative of the function \( g(x) = \ln(x^2 + 1) \).
- \(\frac{2x}{x^2 + 1}\)
- \(\frac{2}{x^2 + 1}\)
- \(\frac{x}{x^2 + 1}\)
- \(\frac{1}{2x(x^2 + 1)}\)
7. The integral \( \int \frac{x^2}{x^2 + 1} dx \) can be solved by:
- Partial fractions
- Substitution
- Integration by parts
- Direct integration
8. A probability function \( P(x) \) is defined for \( x = 0, 1, 2, \ldots \). If \( E(X) = 1 \) and \( \operatorname{Var}(X) = 2 \), what is the distribution of \( X \)?
- Poisson distribution
- Binomial distribution
- Normal distribution
- Exponential distribution
9. The solution to the differential equation \( \frac{d^2y}{dx^2} – 4\frac{dy}{dx} + 4y = 0 \) is:
- \(y = (C_1 + C_2x)e^{2x}\)
- \(y = C_1 e^{2x} + C_2 e^{-2x}\)
- \(y = C_1 e^{4x} + C_2 e^{-4x}\)
- \(y = C_1 \cos(2x) + C_2 \sin(2x)\)
10. The length of the curve \( y = \ln(\cos x) \) from \( x = 0 \) to \( x = \frac{\pi}{4} \) is:
- \(\frac{\pi}{4}\)
- \(\frac{1}{4}\)
- \(\ln(2)\)
- Cannot be determined