Alternative Direct Substitution Approach
- Start from the given equation:
[
costheta + sintheta = sqrt{2}costheta.
] - Rearranging, we get:
[
sintheta = (sqrt{2}-1)costheta.
] - Now consider what we need to prove:
[
costheta – sintheta = sqrt{2}sintheta.
] - Substitute (sintheta = (sqrt{2}-1)costheta) into the left-hand side:
[
costheta – sintheta = costheta – (sqrt{2}-1)costheta = costheta(2-sqrt{2}).
] - Substitute (sintheta = (sqrt{2}-1)costheta) into the right-hand side:
[
sqrt{2}sintheta = sqrt{2}(sqrt{2}-1)costheta = (2-sqrt{2})costheta.
] - Hence, both sides are equal:
[
costheta – sintheta = (2-sqrt{2})costheta
quadtext{and}quad
sqrt{2}sintheta = (2-sqrt{2})costheta.
]
Since the left-hand side and the right-hand side simplify to the same expression, the proof is complete.