Grade XII Applied Mathematics Worksheet
1. The determinant of a 3×3 matrix \(A\) is 5. What is the determinant of \(3A\)?
- 15
- 45
- 135
- None of the above
2. Find the inverse of the matrix \( \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \).
- \( \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} \)
- \( \begin{bmatrix} 4 & -1 \\ -3 & 2 \end{bmatrix} \)
- \( \begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix} \)
- Non-invertible
3. What is the principal value of \( \arcsin(-1) \)?
- \(-\pi\)
- \(-\frac{\pi}{2}\)
- 0
- \(\frac{\pi}{2}\)
4. Solve the differential equation \( \frac{dy}{dx} + 2y = e^{-x} \).
- \(y = Ce^{-2x} + \frac{1}{2}e^{-x}\)
- \(y = Ce^{-2x} – e^{-x}\)
- \(y = Ce^{2x} + e^{-x}\)
- \(y = Ce^{2x} – \frac{1}{2}e^{-x}\)
5. Evaluate the integral \( \int \frac{dx}{x^2 + 1} \).
- \(\arctan(x) + C\)
- \(\arcsin(x) + C\)
- \(\ln|x| + C\)
- \(\frac{1}{x} + C\)
6. Which is the equation of a parabola with focus at (2,3) and directrix y=1?
- \((x-2)^2 = 4(y-2)\)
- \((y-3)^2 = 8(x-2)\)
- \((y-2)^2 = 4(x-2)\)
- \((x-2)^2 = 8(y-3)\)
7. Calculate the area enclosed by the curve \(y=x^3\) and the x-axis from x=0 to x=2.
- 4 square units
- 6 square units
- 8 square units
- None of the above
8. What is the volume of the solid obtained by rotating the area between \(y=x^2\) and \(y=x\) around the x-axis from x=0 to x=1?
- \(\frac{\pi}{10}\) cubic units
- \(\frac{\pi}{30}\) cubic units
- \(\pi\) cubic units
- \(\frac{\pi}{15}\) cubic units
9. A linear programming problem has an objective function \(F = 2x + 3y\) to maximize, with constraints \(x \geq 0\), \(y \geq 0\), \(x + y \leq 10\), and \(2x + 3y \leq 18\). The maximum value of \(F\) is:
- 36
- 30
- 48
- 54
10. The solution set for the inequality \(3x – 7 \leq 2x + 8\) is:
- \(x \leq 15\)
- \(x \geq 15\)
- \(x \leq -15\)
- \(x \geq -15\)