applied maths cuet 2024 worksheets

Grade XII Applied Mathematics Practice Questions

Grade XII Applied Mathematics Practice Questions

1. Which equation represents the eigenvalues of the matrix \( \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \)?

  1. \(\lambda^2 – 4\lambda + 3 = 0\)
  2. \(\lambda^2 – 4\lambda + 4 = 0\)
  3. \(\lambda^2 – 3\lambda + 2 = 0\)
  4. \(\lambda – 3 = 0\)

2. The area of the region bounded by the curves \( y = x^2 \) and \( y = x \) is:

  1. 0.1667 square units
  2. 0.3333 square units
  3. 0.5 square units
  4. 1 square unit

3. Solve the linear system using matrix inversion method: \( x + 2y = 5 \) and \( 3x + 4y = 11 \).

  1. \(x = 1, y = 2\)
  2. \(x = 2, y = 1.5\)
  3. \(x = 3, y = 1\)
  4. \(x = 7, y = -1\)

4. What is the Fourier transform of \( f(t) = e^{-|t|} \)?

  1. \(\frac{2}{1 + \omega^2}\)
  2. \(\frac{1}{1 + \omega^2}\)
  3. \(\frac{2}{\omega^2 – 1}\)
  4. \(\frac{2\omega}{1 + \omega^2}\)

5. A function \( f(x) \) is defined as \( f(x) = \left\{ \begin{array}{ll} x^2 & \quad x < 1 \\ 2x + 1 & \quad x \geq 1 \end{array} \right. \). Find the limit \( \lim_{x \to 1} f(x) \).

  1. 1
  2. 2
  3. 3
  4. Does not exist

6. Calculate the derivative of the function \( g(x) = \ln(x^2 + 1) \).

  1. \(\frac{2x}{x^2 + 1}\)
  2. \(\frac{2}{x^2 + 1}\)
  3. \(\frac{x}{x^2 + 1}\)
  4. \(\frac{1}{2x(x^2 + 1)}\)

7. The integral \( \int \frac{x^2}{x^2 + 1} dx \) can be solved by:

  1. Partial fractions
  2. Substitution
  3. Integration by parts
  4. Direct integration

8. A probability function \( P(x) \) is defined for \( x = 0, 1, 2, \ldots \). If \( E(X) = 1 \) and \( \operatorname{Var}(X) = 2 \), what is the distribution of \( X \)?

  1. Poisson distribution
  2. Binomial distribution
  3. Normal distribution
  4. Exponential distribution

9. The solution to the differential equation \( \frac{d^2y}{dx^2} – 4\frac{dy}{dx} + 4y = 0 \) is:

  1. \(y = (C_1 + C_2x)e^{2x}\)
  2. \(y = C_1 e^{2x} + C_2 e^{-2x}\)
  3. \(y = C_1 e^{4x} + C_2 e^{-4x}\)
  4. \(y = C_1 \cos(2x) + C_2 \sin(2x)\)

10. The length of the curve \( y = \ln(\cos x) \) from \( x = 0 \) to \( x = \frac{\pi}{4} \) is:

  1. \(\frac{\pi}{4}\)
  2. \(\frac{1}{4}\)
  3. \(\ln(2)\)
  4. Cannot be determined

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top