
Facts that Matter

Thomson’s Model of Atom
Every atom consists of a positively charged sphere of radius of the order of 10−10 m in which the
negatively charged electrons are uniformly embedded like plums in a pudding.
This model could not explain scattering of α-particles through thin foils and hence discarded.

Rutherford’s ααααα-Particle Scattering Experiment
In 1911, Rutherford suggested an experiment for α-particle scattering. For the experiment,
H-Guiger and E. Marsden considered 214

83Bi as a source of α-particles. A collimated beam of
α-particles of energy 5.5 MeV was allowed to fall on a 2.1 × 10−7 m thick gold foil.
When it was detected with the help of an α-particle detector (made up of ZnS screen and a
microscope), it was found that α-particle got scattered. The scattered α-particles produced
scintillations on the zinc sulphide screen. These scintillations were counted at different angles
from the direction of incident beam.

Source of
-particles�

About 1 in 8000
is reflected back

Some are deviated
through a large angle �

Microscope

ZnS Screen

�

Most pass through

Gold foil about

10 m thick
–8

Vacuum

Beam of
-particles�

Fig. 12.1

Observations:
— Most α-particles passed through the foil undeviated and reached the screen.
— A large number of α-particles suffered large deflections.
— A small number of α-particles retraced its own path (deflected at 180°).
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Explanation:
— Since most of α-particles passed without deflection, a large part of the atom should consist

of empty space.
— For α-particles to be deflected at 180°, most of the atomic mass must be concentrated in

a small space and should be positively charged. This was called nucleus.
— α-particles scatter due to intense electric field near a nucleus.

Limitations:
This model could not explain instability of the atom because according to classical electromagnetic
theory the electron revolving around the nucleus must continuously radiate energy in the form of
electromagnetic radiations and hence it should fall into the nucleus.

Distance of Closest Approach
When a α-particle of mass m and velocity v moves directly towards a nucleus of atomic number
‘z’, its distance of closest approach is given by

r0 =
2 42 2

2
k Z
E

k Z
mv

e e=

where, E =
1
2

2mv

and k =
1

4 0πε
 = 9 × 109 Nm2 C2

Impact Parameter
Impact parameter is defined as the perpendicular distance of the initial velocity vector of the alpha
particle from the central line of the nucleus, when the particle is far away from the nuclus of the
atom.

Impact parameter, b =
ze

E

ze

mv

2

0

2

0
2

2
4

2

4 1
2

cot cotθ

πε

θ

πε
= F

H
I
K

For large values of b, cot θ
2

 is large and scattering angle (θ) is small i.e., if α-particles are travelling

away from the nucleus, they suffer small deflection.

For small value of b, cot θ
2

 is small and scattering angle θ is large. i.e., if α-particles are travelling

close to the nucleus, they suffer large deflection.

When b = 0, cot 
θ
2

 = 0; then 
θ
2

 = 90°. Hence θ = 180°. i.e., the α-particles travelling directly
towards the nucleus, retraces its own path.

Bohr’s Postulates of Atomic Theory
Bohr combined classical and early quantum concepts and gave his theory in the form of three
postulates.
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(i) An electron in an atom could revolve in certain stable orbits without the emission of
radiant energy contrary to the prediction of electromagnetic theory. According to this
postulates, each atom has certain definite stable states in which it can exist and each
possible state has definite total energy. These are called stationary states of the atom or
orbit.

(ii) The electron revolves around the nucleus only in those orbits for which the angular
momentum is some integral multiple of h/2π where h in Planck’s constant
(= 6.6 × 10–34 Js). Thus, the angular momentum L of the orbiting electron is quantised, i.e.,

L =
nh
2π

 = mvr

(v = velocity of electron and r = radius of orbit).
(iii) An electron might make a transition from one of its specified non-radiating orbits to

another of lower energy. When it does so, a photon is emitted having energy equal to the
energy difference between the initial and final states. The frequency of the emitted photon
in giving by

ν =
1
h

(Ei – Ef)

where Ei and Ef are the energies of the initial and final states and Ei > Ef..

Velocity of Electron in its Orbit
Let an electron is revolving in an atom of atomic number z in its orbit of radius R. The
required centrepetal force for this electron is provided by electrostatic force between the electron and
nucleus.

Thus,
mv

R

2
= 2

( ) ( )k e Ze
R

or (mvR)v = kZe2

or nh v
2π

. = kZe2

or v =
π2 kZe
nh

...(i)

Radius of the Electron’s Orbit

∵
mv

R

2
= 2

( ) ( )k Ze e
R

∴ R =
2

2
kZe
mv

ze

e

Fig. 12.2
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Putting the value of v from Eq. (i)

R =
 π
 
 

2

222

kZe

kZem
nh

or R =
π

2 2

2 24
n h
kZe m

...(ii)

Energy of the Electron in its Orbit
(i) Kinetic energy

∵
mv

R

2
=

−
2

( ) ( )k Ze e
R

∴
1
2

2mv =
21 .

2
kZe

R
...(iii)

(ii) Potential energy
Potential energy of two charges (e) and (Ze) separated by R is given by

U = −( ) ( )k Ze e
R

= −
2kZe

R
...(iv)

Thus, total energy of the electron in its orbit

E =
1
2

2 2kze
R

kze
R

−

or E = − 1
2

2kze
R

...(v)

Substituting the value of R from Eq. (ii)

E = −
 
 

π 

2

2 2

2 2

1
2

4

kZe
n h
kZe m

or E = π−
2 2 2 4

2 2
2 k Z e m

n h
...(vi)

or E = –13.6 
2

2
Z
n

 eV.

Spectral Lines in Hydrogen Atom
••••• Let E1 and E2 be the energies of an electron in orbit n1 and n2 respectively. When electron

jumps from orbit of higher energy (n2) to orbit of lower energy (n1) it emits energy of
frequency ν in the form of photon.

hν = E2 – E1
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where, E2 =
π−

2 2 2 4

2 2
2

2 k Z e m
n h

and E1 =
π−

2 2 2 4

2 2
1

2 k Z e m
n h

∴ hν =  π − 
 

2 2 2 4

2 2 2
1 2

2 1 1k Z e m
h n n

or
a
λ

=
 π − 
 

2 2 2 4

3 2 2
1 2

2 1 1k Z e m
h n n

or
1
λ

=
 π − 
 

2 2 2 4

3 2 2
1 2

2 1 1k Z e m
ch n n

or
1
λ

= R
n n
1 1

1
2

2
2−

L
NMM

O
QPP

where R is Rydberg’s constant.

and 1
λ

 is wave number.

••••• When electron jumps from any higher energy level to that lower orbit, the distribution of
energy wavelength wise is called spectrum.

••••• When electron jumps from any higher energy level n2 = 2, 3, 4, ... to first orbit n1 = 1, the
sequence of spectral lines obtained Lyman series.
For Lymen series,

1
λ

= R
n

1 1

2
2−

L
NMM
O
QPP

λ =
n

R n R R R
2
2

2
2 1

4
3

9
8

16
15( )

, , , ...
−

=

••••• When electron jumps from any higher energy level n2 = 3, 4, 5... to lower energy level
n1 = 2, the sequence of spectral lines obtained is called Balmer series.

1
λ

= R
n

1
4

1

2
2−

L
NMM

O
QPP

or λ =
4

4
36
5

64
12

2
2

2
2
n

R n R R( )
, , ...

−
=

••••• When electron jumps from any higher energy level n2 = 4, 5, 6 ... to lower energy n1 = 3,
the sequence of spectral lines obtained is called Paschen series.
For Paschen series,

1
λ

= R
n

1
9

1

2
2−

L
NMM

O
QPP

or λ =
9

9
144
7

225
16

2
2

2
2
n

R n R R( )
, , ...

−
=
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••••• When electron jumps from any heigher energy level n2 = 5, 6, 7... to lower energy level
n1 = 4, the sequence of spectral lines obtained is called Breckett series.
For Breckett series

1
λ

= R
n

1
16

1

2
2−

L
NMM

O
QPP

or λ =
16

16]
400
9

576
20

2
2

2
2
n

R n R R[
, , ...

−
=

••••• When electron jumps from any higher energy level n2 = 6, 7, 8 ... to lower energy level
n1 = 1, the sequence of spectral lines obtained is called pfund series.
For Pfund series,

1
λ

= R
n

1
25

1

2
2−

L
NMM

O
QPP

or λ =
25

25
900
11

1225
24

2
2

2
2

n
R n R R[ ]

, , ...
−

=

Above series are shown in Fig. 12.3.

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6
n = 7

Pfund
series

Breckelt
series

Paschen
series

Balmer
series

Lyman
series

Fig. 12.3

De Broglie’ Explanation of Bohr’s Postulate of Quantisation
Louis de Broglie argued that the electron in its orbit, as proposed by Bohr, must be seen as
particle wave. In analogy to waves travelling on a string, particle
waves too can lead to standing waves under resonant conditions.
When a string is plucked, a vast number of wavelengths are excited.
However, only those wavelengths survive which have nodes at the
ends and form the standing wave in the string. It means that in a
string, standing waves are formed when the total distance travelled
by a wave down the string and back is one wavelength, two
wavelengths, or any integral number of wavelengths. Waves with
other wavelengths interfere with themselves upon reflection and their
amplitudes quickly drop to zero. For an electron moving in nth circular
orbit of radius r, the total distance is the circumference of the orbit, 2πr.

r

Nucleus

Fig. 12.4
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Thus, 2πr = nλ ...(i)
where n = 1, 2, 3...
Applying de-Broglie wavelength-momentum concept,

λ = h
P

h
mv

= ...(ii)

From Eqs. (i) and (ii)

2πr = n h
mv
F
HG
I
KJ

or mvr = nh
2π

Thus, the angular momentum of electron (mvr) in its orbit is integral multiple of h/2π.

Limitations of Bohr’s Atomic Model
••••• The Bohr model is applicable to hydrogenic atoms. It cannot be extended even to more two

electron atoms such as helium. The analysis of atoms with more than one electron was
attempted on the lines of Bohr’s model for hydrogenic atoms but did not meet with any
success. Difficulty lies in the fact that each electron interacts not only with the positively
charged nucleus but also with other electrons. The formulation of Bohr model involves
electrical force between positively charged nucleus and electron. It does not include the
electrical forces between electrons which necessarily appear in multi-electron atoms.

••••• While the Bohr’s model correctly predicts the frequencies of the light emitted by hydrogenic
atoms, the model is unable to explain the relative intensities of the frequencies in the
spectrum. In emission spectrum of hydrogen, some of the visible frequencies have weak
intensity, others strong. Why? Experimental observations depict that some transitions are
more favoured than others. Bohr’s model unable to account for the intensity variations.
Thus, Bohr’s model present an elegant picture of the an atom and cannot be generalised
to complex atoms.

QUESTIONS FROM TEXTBOOK
12.1. Choose the correct alternative from the clues given at the end of the each statement:

(a) The size of the atom in Thomson’s model is ........... the atomic size in Rutherford’s model.
(much greater than/no different from/much less than)

(b) In the ground state of ........... electrons are in stable equilibrium, while in ........... electrons
always experience a net force. (Thomson’s model/Rutherford’s model)

(c) A classical atom based on ........... is doomed to collapse.
 (Thomson’s model/Rutherford’s model)

(d) An atom has a nearly continuous mass distribution in a ........... but has a highly
non-uniform mass distribution in ........... (Thomson’s model/Rutherford’s model)

(e) The positively charged part of the atom possesses most of the mass in ........... (Rutherford’s
model/both the models).
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Sol. (a) No different from
(b) Thomson’s model, Rutherford’s model
(c) Rutherford’s model
(d) Thomson’s model, Rutherford’s model
(e) Both the models.

12.2. Suppose you are given a chance to repeat the alpha-particle scattering experiment using a thin
sheet of solid hydrogen in place of the gold foil. (Hydrogen is a solid at temperatures below
14 K.) What results do you expect?

Sol. The nucleus of a hydrogen atom is a proton (mass 1.67 × 10−27 kg) which has only about
one-fourth of the mass of an alpha particle (6.64 × 10−27 kg). Because the alpha particle
is more massive, it won’t bounce back in even a head-on collision with a proton. It is like
a bowling ball colliding with a ping-pong ball at rest. Thus, there would be no large angle
scattering in this case. In Rutherford’s experiment, by contrast, there was large-angle
scattering because a gold nucleus is more massive than an alpha-particle. The analogy
there is a ping-pong ball hitting a bowling ball at rest.

12.3. What is the shortest wavelength present in the Paschen series of spectral lines?
Sol. The shortest wavelength of the spectral line (series limit) of Paschen series is given by

1
λ min

= R R1
3

1
92 2−

∞
F
HG

I
KJ =

⇒ λmin =
9 9

1097 107R
=

×.
m

or, λmin =
9 10 10

1 097

7 10× ×−

.
Å

= 8204.2 Å.
12.4. A difference of 2.3 eV separates two energy levels in an atom. What is the frequency of radiation

emitted when the atom make a transition from the upper level to the lower level?
Sol. E2 − E1 = 2.3 eV = 2.3 × 1.6 × 10−19 J

ν =
−2 1E E
h

⇒ ν =
2 3 1 6 10

6 6 10

19

34
. .

.
× ×

×

−

−

or, ν =
3 68 10

6 6

15.
.
×

= 0.557 × 1015 Hz
= 5.6 × 1014 Hz.

12.5. The ground state energy of hydrogen atom is − 13.6 eV. What are the kinetic and potential energies
of the electron in this state?

Sol. Here, Ground Energy, E = − 13.6 eV

Kinetic Energy, Ek =
1

4 20

2

πε
⋅ e

r
[Ek = 2Ep]

and Potential Energy, Ep = − 1
4 0

2

πε
e
r ∵ E

k q q
rp =

−L
NM

O
QP

1 2
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Total energy, E = Ek + Ep

=
1

4 2
1

40

2

0

2

πε πε
⋅ − ⋅e

r
e
r

E = − ⋅
F
HG

I
KJ

1
2

1
4 0

2

πε
e
r

or, − 13.6 = − ⋅
F
HG

I
KJ

1
2

1
4 0

2

πε
e
r

∴
1

4 0

2

πε
e
r

= 27.2

∴ Ek = = =
πε

2

0

1 27.2 eV 13.6 eV
4 2 2

e
r

Ep = − ⋅1
4 0

2

πε
e
r

 = − 27.2 eV.

12.6. A hydrogen atom initially in the ground level absorbs a photon, which excites it to the n = 4 level.
Determine the wavelength and frequency of photon.

Sol. Energy of an electron in nth orbit of H atom

En =
− 13 6

2
.

n
 eV

E1 = – 13.6 eV
Energy is 4th (n = 4) level

R4 =
− 13 6

42
.

 = – 0.85

∆E = E4 – E1

∆E = – 0.85 – (– 13.6) eV
= – 0.85 + 13.6

∆E = 12.75 eV
hν = 12.75 eV
hν = 12.75 × 1.6 × 10–19 J

ν =
12 75 1 6 10

6 6 10

19

34
. .

.
× ×

×

−

−

ν = 3.078 × 1015 Hz

λ =
c
λ

=
×

×
3 10

3 078 10

8

15.
λ = 974.4 Å.

12.7. (a) Using the Bohr’s model calculate the speed of the electron in a hydrogen atom in the n = 1,
2, and 3 levels. (b) Calculate the orbital period in each of these levels.

Sol. (a) From v =
c
n

α , where α = 
2

0 0073
2π Ke

ch
= .
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v1 =
3 10

1
0 0073

8×
× .  = 2.19 × 106 m/s

v2 =
3 10

2
0 0073

8×
× .  = 1.095 × 106 m/s

v3 =
3 10

3
0 0073

8×
× .  = 7.3 × 105 m/s.

(b) Orbital period, T =
2πr

v
 As r1 = 0.53 × 10−10 m

T1 =
2 0 53 10

2 19 10

10

6
π × ×

×

−.
.

 = 1.52 × 10−16 s

As r2 = 4 r1 and v2 = 
1
2 1v

T2 = 8 T1 = 8 × 1.52 × 10−16 s = 1.216 × 10−15 s

As r3 = 9 r1 and v3 = 
1
3 1v

∴ T3 = 27 T1 = 27 × 1.52 × 10−16 s = 4.1 × 10−15 s.
12.8. The radius of the innermost electron orbit of a hydrogen atom is 5.3 × 10−11 m. What are the radii

of the n = 2 and n = 3 orbits?
Sol. r0 = 5.3 × 10−11 m, r = r0 . n2

(i) when n = 2, r = 5.3 × 10−11 × (2)2

or, r = 21.2 × 10−11 m = 2.12 × 10−10 m [∵ rn = 0.53 × n2 Å]
(ii) when n = 3, r = 5.3 × 10−11 m × (3)2

= 47.7 × 10−11 m = 4.77 × 10−10 m.
12.9. A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. What series

of wavelengths will be emitted?
Sol. In ground state, energy of gaseous hydrogen at room temperature = − 13.6 eV. When

it is bombarded with 12.5 eV electro beam, the energy becomes −13.6 + 12.6 = − 1.1 eV.

∵ En =
− 13 6

2
.

n
So n2 = 

−
−
13 6
11

.
.

 = 12.3 ⇒ n = 3

The electron would jump from n = 1 to n = 3, where E3 = − 13 6
32

.  = − 1.5 eV. On

de-excitation the electron may jump from n = 3 to n = 2 giving rise to Balmer series. It
may also jump from n = 3 to n = 1, giving rise to Lyman series.

So, number of  spectral line = 
n n( ) ( )−

=
−1

2
3 3 1

2
 = 3 spectral lines appear.

12.10. In accordance with the Bohr’s model, find the quantum number that characterises the earth’s
revolution around the sun in an orbit of radius 1.5 × 1011 m with orbital speed 3 × 104 m/s. (Mass
of earth = 6.0 × 1024 kg.)

Sol. According to Bohr’s theory

mvr =
π2

nh
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or, n =
π2 mvr

h

or, n =
2 3 14 6 0 10 3 10 1 5 10

6 63 10

24 4 11

34
× × × × × × ×

× −
. . .

.
= 2.56 × 1074.

12.11. Answer the following questions, which help you understand the difference between Thomson’s
model and Rutherford’s model better.
(a) Is the average angle of deflection of α-particles by a thin gold foil predicted by Thomson’s model

much less, about the same, or much greater than that predicted by Rutherford’s model?
(b) Is the probability of backward scattering (i.e., scattering of α-particles at angles greater than

90°) predicted by Thomson’s model much less, about the same, or much greater than that
predicted by Rutherford’s model?

(c) Keeping other factors fixed, it is found experimentally that for small thickness t, the number
of α-particles scattered at moderate angles is proportional to t. What clue does this linear
dependence on t provide?

(d) In which model is it completely wrong to ignore multiple scattering for the calculation of
average angle of scattering of α-particles by a thin foil?

Sol. (a) About the same.
(b) Much less.
(c) It suggests that scattering is predominantly due to a single collision, because the

chance of a single collision increases linearly with the number of target atoms, and
hence linearly with the thickness of the foil.

(d) In Thomson’s model, a single collision causes very little deflection. The observed
average scattering angle can be explained only by considering multiple scattering. So
it is wrong to ignore multiple scattering in Thomson’s model. In Rutherford’s model,
most of the scattering comes through a single collision and multiple scattering effects
can be ignored as a first approximation.

12.12. The gravitational attraction between electron and proton in a hydrogen atom is weaker than the
coulomb attraction by a factor of about 10−40. An alternative way of looking at this fact is to
estimate the radius of the first Bohr orbit of a hydrogen atom if the electron and proton were bound
by gravitational attraction. You will find the answer interesting.

Sol. The radius of the first orbit of hydrogen atom in Bohr’s model is given by

r =
π

2 2

2 24
n h
mkZe

r =
ε
π

π ε
π

0
2

2
0

2

2

2
4

4
h

me e
h

m
=

F
HG
I
KJ

 = πε = = 
0

1here
4
1, 1

k

Z n

If electrostatic force 1
4 0

2

2πε
⋅ e
r

 is replaced by gravitational force GMm
r2 , we put GMm in

place of e2

04πε
 in above expression.

Hence radius of first orbit under gravitational force

rG =
1

4

2

2GMm
h

m
⋅

π
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=
h
GMm

2

2 24π

M
m

 =  mass of proton
 =  mass of electron
L
NM

O
QP

or, rG =
−

− − −
×

× × × × × ×

34 2

2 11 27 31 2
(6.26 10 )

4 (3.14) (6.67 10 ) (1.672 10 ) (9.1 10 )

=
6626 6626 10

4 3 14 3 14 667 16724 19 19 10

74

112
× ×

× × × × × × ×

−

−. .

= 1.21 × 1029 m.
It is larger than the size of the universe.

12.13. Obtain an expression for the frequency of radiations emitted when a hydrogen atom de-excites from
level n to level (n − 1). For large n, show that the frequency equals the classical frequency of
revolution of the electron in the orbit.

Sol. The frequency ν of the emitted radiation when a hydrogen atom de-excites from level n
to level (n − 1) is

E = hv = E2 − E1

ν =
1
2

1 12 2

1
2

2
2

mc
h n n
α −
L
NM

O
QP

where α = 
2 2π Ke

ch
 = fine structure constant

ν =
   − −α α− =   

− −      

2 22 2 2 2

2 2 2 2
( 1)1 1 1

2 2( 1) ( 1)
n nmc mc

h hn n n n

=
[ ]α + − − +

−

2 2

2 2
( 1) ( 1)
2 ( 1)

mc n n n n
hn n

ν =
α −

−

2 2

2 2
(2 1)

.
2 ( 1)

mc n
h n n

For large n, (2n − 1) ≈ 2n, and (n − 1) ≈ n

ν =
mc n

h n n
mc

hn

2 2

2 2

2 2

3
2

2
α α.

.
=

Putting α =
2 2π Ke

ch
, we get ν = 

mc
hn

K e
c h

2

3

2 2 4

2 2
4

⋅
π

ν =
4 2 2 4

3 3
π mK e

n h

In Bohr’s atom model, velocity of electron in nth orbit is v = 
nh

mr2π
 and radius of nth orbit

is r = 
n h

mKe

2 2

2 24π
(∵ Z = 1)

∴ frequency of revolution of electron ν =
v

r
nh

mr
mKe
n h2 2

4
2

2 2

2 2π π
π
π

=
⋅

F
HG

I
KJ

ν =
Ke
nh r

Ke
nh

mKe
n h

2 2 2 2

2 2
4

⋅
=
F
HG

I
KJ

π
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ν =
4 2 2 4

3 3
π mK e

n h
 which is the same as (i).

Hence for large values of n, classical frequency of revolution of electron in nth orbit is the
same as the frequency of radiation emitted when hydrogen atom de-excites from level (n)
to level (n − 1).

12.14. Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines
the typical atomic size? Why is an atom not, say, thousand times bigger than its typical size? The
question had greatly puzzled Bohr before he arrived at his famous model of the atom that you have
learnt in the text. To simulate what he might well have done before his discovery, let us play as
follows with the basic constants of nature and see if we can get a quantity with the dimensions
of length that is roughly equal to the known size of an atom (~ 10−10 m).
(a) Construct a quantity with the dimensions of length from the fundamental constants e, me, and

c. Determine its numerical value.
(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the

atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic
domain where c is not expected to play any role. This is what may have suggested Bohr to
discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant
h had already made its appearance elsewhere. Bohr’s great insight lay in recognising that h,
me, and e will yield the right atomic size. Construct a quantity with the dimension of length
from h, mc, and e and confirm that its numerical value has indeed the correct order of
magnitude.

Sol. (a) From Coulomb’s law for force between hydrogen nucleus and electron.

F =
1

4 0
2πε

⋅
⋅e e

r

⇒ r =
1

4 0πε
e e
F r

⋅
⋅

But F.r (force × distance) = work or energy = mc2

∴ r =
1

4 0

2

2πε
e

mc
 = 2.8 × 10−15 m.

It is much smaller than typical atomic size.
(b) From Bohr’s formula for first hydrogen orbit.

r =
ε
π

0
2

2
h

me
 = 0.53 × 10−10 m

It is of the order of atomic size.
12.15. The total energy of an electron in the first excited state of the hydrogen atom is about − 3.4 eV.

(a) What is the kinetic energy of the electron in this state?
(b) What is the potential energy of the electron in this state?
(c) Which of the answers above would change if the choice of the zero of potential energy is

changed?

Sol. In Bohr’s model, mvr = nh
2π

 and 
mv

r
Ze

r

2 2

0
24

=
πε

which gives Ek = 
1
2 8

2
2

0
mv Ze

r
=

πε
; r = 

4 0
2

2
2πε h

Ze m
n .
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These relations have nothing to do with the choice of the zero of potential energy. Now,
choosing the zero of potential energy at infinity, we have

Ep =
− Ze

r

2

04πε
 which gives Ep = − 2 Ek

and E = Ek + Ep = − Ek
(a) The quoted value of E = − 3.4 eV is based on the customary choice of zero of potential

energy at infinity. Using E = − Ek, the kinetic energy of electron in this state is + 3.4
eV.

(b) Using Ep = − 2 Ek, potential energy of the electron is − 2 × 3.4 eV = − 6.8 eV.
(c) If the zero of potential energy is chosen differently, kinetic energy does not change.

Its value is + 3.4 eV. This is independent of the choice of the zero of potential
energy. The potential energy, and the total energy of the state, however, would alter
if a different zero of the potential energy is chosen.

12.16. If Bohr’s quantisation postulate (angular momentum = nh/2π) is a basic law of nature, it should
be equally valid for the case of planetary motion also. Why then do we never speak of quantisation
of orbits of planets around the sun?

Sol. Angular momenta associated with planetary motion are incomparably large relative to
h. For example, angular momentum of the earth in its orbital motion is of the order of
1070 h. In terms of the Bohr’s quantisation postulate, this corresponds to a very large
value of n (of the order of 1070). For such large values of n, the differences in the
successive energies and angular momenta of the quantised levels of the Bohr model are
so small compared to the energies and angular momenta respectively for the levels that
one can practically consider the levels continuous.

12.17. Obtain the first Bohr’s radius and the ground state energy of a muonic hydrogen atom [i.e., an
atom in which a negatively charged muon (µ−) of mass about 207 me orbits around a proton].

Sol. The first Bohr’s radius of H-atom is given by

r1 = 4
40

2

2 2πε
π

h
m ee

 = 5.29 × 10−11 m

If r1′ is the first Bohr’s radius of muonic hydrogen atom, then

r1′ = 4
4 207

5 29 10
2070

2

2 2

11
πε

π
h

m eeb g =
× −.

= 2.5 × 10−12 m
The ground state (n = 1) energy of H-atom is given by

E1 = −
F
HG
I
KJ ⋅ =1

4
2 13 6

0

2 2 2

2πε
π m e

h
e . eV

If E1′ is ground state energy of muonic hydrogen atom, then

E1′ = −
F
HG
I
KJ ⋅ = − ×1

4
2 207

13 6 207
0

2 2 2

2πε
π m e

h
eb g

.

= − 2815.2 eV.
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MORE QUESTIONS SOLVED
I. VERY SHORT ANSWER TYPE QUESTIONS

Q. 1. In a Rutherford’s α-scattering experiment with thin gold foil, 8100 scintillations per minute are
observed at an angle of 60°. What will be the number of scintillations per minute at an angle of 120°?

Ans. n1 (number of scintillations per minute at an angle 60°) = 8100
n2 (number of scintillations per minute at an angle 120°) =?

The scattering in the Rutherford’s experiment is proportional to cot4 φ
2

.

or
n
n

2

1
=

cot /
cot /

4
2

4
1

2
2

φ
φ

Hence,
n
n

2

1
=

cot

cot

cot
cot

4

4

4

4

4120
2

60
2

60
30

1
3
3

1
81

°F
H
I
K

°F
H
I
K

=
°
°

=

F

H

GGG

I

K

JJJ
=

⇒ n2 =
1

81
1
81

8100 1001× = × =n .

Q. 2. Name the series of hydrogen spectrum lying in the infrared region.
Ans. Paschen series, Brackett series and pfund series.
Q. 3. Can a hydrogen atom absorb a photon having energy more than 13.6 eV?
Ans. Yes, it can absorb. But the atom would be ionised.
Q. 4. Name the series of hydrogen spectrum which does not lie in the visible region.
Ans. Lyman series.
Q. 5. Which of the following given transitions in a hydrogen atom emits the photon of lowest frequency?

 (i) n = 2 to n = 1
(ii) n = 4 to n = 3.

Ans. (ii) n = 4 to n = 3
Reason: The energy levels got progressively closer as n increases. From the given sets, the
closest to each other (hence, minimum energy difference levels) are n = 4 to n = 3.

Q. 6. The shortest wavelength in the Lyman Series is 911.6 Å. Then the longest wavelength in the
Lyman’s series is:

Ans. For the Lyman Series, we have

λ
λ

L

S
=

4
3

Hence, λL =
4
3

× λS

⇒ λL =
4
3

911 6× . Å

= 1215 Å.
Q. 7. Name the series of hydrogen atom spectrum which lies in the visible region.
Ans. Balmer Series.
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Q. 8. What are the values of first and second excitation potential of hydrogen atom?
Ans. 10.2 V; 12.09 V.
Q. 9. What is the ratio of volume of atom to the volume of nucleus?
Ans. 1015.

Q. 10. If electron-orbits with principal quantum number n > 3 were not allowed, what would be the
number of possible elements?

Ans. The maximum number of electrons that can be accommodated in orbits with n = 3 is
2 × 12 + 2 × 22 + 2 × 32 = 28.

Q. 11. What is the impact parameter for scattering of α-particle by 180°?
Ans. Zero.

Since, Impact parameter, b = 
Ze

mv

2

0
2

2

4 1
2

cot θ

πε FH
I
K

.

Q. 12. How many times does the electron go round the first Bohr orbit in a second?
Ans. The frequency of electron is given by

ν =
v

r
mvr

mr

nh

mr2 2
2

22 2π π
π

π
= =

or, ν =
nh

mr4 2 2π

Hence, ν1 =
h
mr4 2 2π

.

II. SHORT ANSWER TYPE QUESTIONS
Q. 1. (a) The energy levels of an atom are as

shown below. Which of them will result
in the transition of a photon of wavelength
275 nm?

(b) Which transition corresponds to emission
of radiation of maximum wavelength?

Ans. (a) For element A
Ground state energy, E1 = − 2 eV
Excited state energy, E2 = 0 eV

Energy of photon emitted,  E =. E2 − E1

= 0 − (− 2) = 2 eV
∴ Wavelength of photon emitted,

λ =
hc
E

=
6 63 10 3 10

2 1 6 10
19 878 10

3 2

34 8

19

7.
.

.
.

× × ×
× ×

=
×−

−

−

= 6.211 × 10−7 m = 621.1 nm.

A B

C D

0 eV

–2.0 eV

–0.45 eV

–10 eV

Fig. 12.5
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For element B
E1 = − 4.5 eV, E2 = 0 eV
E = 0 − (− 4.5) = 4.5 eV

∴ λ =
6 63 10 3 10

4 5 1 6 10
19 878 10

7 2

34 8

19

7.
. .

.
.

× × ×
× ×

=
×−

−

−

= 2.76 × 10−7 = 276 nm.
For element C

E1 = − 4.5 eV, E2 = − 2 eV
E = − 2 − (4.5) = 2.5 eV

∴ λ =
6 63 10 3 10

2 5 1 6 10
19 878 10

4

34 8

19

7.
. .

.× × ×
× ×

=
×−

−

−

= 4.969 × 10−7 m = 496.9 nm.
For element D

E1 = − 10 eV, E2 = − 2 eV
E = − 2 − (− 10) = 8 eV

∴ λ =
6 63 10 3 10

8 1 6 10
19 878 10

12 8

34 8

19

7.
.

.
.

× × ×
× ×

=
×−

−

−

= 1.552 × 10−7 m = 155.2 nm.
(b) Element A has radiation of maximum wavelength 621 nm.

Q. 2. The Rydberg constant for hydrogen is 10967700 m−1. Calculate the short and long wavelength
limits of Lyman series.

Ans. For Lyman series, the wave number is given by

ν =
1 1

1
1

2 2λ
= −FHG

I
KJR

nH

For the short wavelength limit (λ = λs), n = ∞

or νs = 1 1
1

1
2 2λ s

H HR R= −
∞

F
HG

I
KJ =

∴ λs =
1 1

10967700RH
= m

= 9.116 × 10−8 m = 911.6 Å
For long wavelength limit (λ = λL) n = 2

∴ νL = 1 1
1

1
2

3
42 2λL

H HR R= −FHG
I
KJ =

∴ λL =
4

3 RH

=
4
3

911 6 1215× =. Å Å .
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Q. 3. The energy of the electron, the hydrogen atom, is known to be expressible in the  form

En =
−

2
13.6 eV

n
(n = 1, 2, 3, .....)

Use this expression to show that the
(i) electron in the hydrogen atom can not have an energy of − 2 V.

(ii) spacing between the lines (consecutive energy levels) within the given set of the observed
hydrogen atom spectrum decreases as n increases.

Ans. As, En = −
13 6

2
. eV
n

Putting n = 1, 2, 3 ..... n, we get

E1 =
−

= −
13 6
12

13 6
.

. eV

E2 =
−

= − =
13 6
2

13 6
4

3 42
. . . eV

E3 =
−

= − = −
13 6
3

13 6
9

1 512
. . . eV

E4 =
−

=
−13 6

4
13 6
162

. .
 = – .85 V

.............................................

.............................................

En =
−

∞
=

13 6
02

.
eV

(i) Hence, it can be observed that the electron in the hydrogen atom can not have an
energy of − 2V.

(ii) As n increases, energies of the excited states come closer and closer together.
Therefore, as n increases, En becomes less negative until at n = ∞, i.e., En = 0.

Q. 4. Calculate the nearest distance of approach of an α-particle of energy 2.5 eV being scattered by
a gold nucleus (Z = 79).

Ans. We know that the electrostatic potential at a distance x due to nucleus is given by
Z e/4 π ε0 x where Z e is the charge on the nucleus.
The potential energy of an α-particle when it is at a distance x, from the nucleus is given by

PE =
Ze

x
e

4
2

0πε
F
HG

I
KJ  = 

2
4

2

0

Ze
xπεb g ,

2e being the charge on α-particle.
Since the α-particle is momentarily stopped at a distance x, its initial kinetic energy is
completely changed into potential energy here. Hence

1
2

2m v =
2
4

2

0

Ze
xπε (at nearest approach K.E. = P.E.)

or x =
2
4

1

2

2

0
2

Ze
mvπε

× F
HG
I
KJ
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Now energy of α-particle = 
1
2

2m v  = 2.5 MeV

= 2.5 × 106 × 1.6 × 10−19 J
= 2.5 × 1.6 × 10−13 J

Substituting values we get

x =
2 79 1 6 1 6 10 9 10

2 5 1 6 10

38 9

13
× × × × × ×

× ×

−

−
. .
. .

m

= 9.101 × 10−14 m.
Q. 5. In Bohr’s theory of hydrogen atom, calculate the energy of the photon emitted during a transition

of the electron from the first excitated state to its ground state. Write in which region of the
electromagnetic spectrum this transition lies.
Given Rydberg constant R = 1.03 × 107 m−1.

Ans. As, En = − 13 6
2
.

n
eV

Energy of the photon emitted during a transition of the electron from the first excited state
to its ground state.

E = E2 − E1

= − − −FHG
I
KJ

13 6
2

13 6
12 2

. .

= − +13 6
4

13 6
1

. .  = − 3.40 + 13.6 = 10.2 eV

This transition lies in the region of Lyman series.
Q. 6. The wavelength of the first member of the Balmer series in hydrogen spectrum is 6563 A. What

is the wavelength of the first member of Lyman series?
Ans. Balmer series

1
1λ

= R R1
2

1
3

5
362 2−FHG

I
KJ =

Lyman series
1
2λ

= R R1
1

1
2

3
42 2−FHG

I
KJ =

λ
λ

2

1
=

4
3

5
36

20
108

5
27R

R
× = =

λ2 = × λ = × =1
5 5 6563 1215 Å

27 27
.

Q. 7. The ground state energy of hydrogen atom is − 13.6 eV.
(i) What is the potential energy of an electron in the 3rd excited state?

(ii) If the electron jumps to the ground state from the 3rd excited state, calculate the wavelength
of the photon emitted.

Ans. The energy of an electron in nth orbit is given by

En = − 13 6
2
.

n
eV
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(i) For 3rd excited state, n = 4

∴ E4 = − = − = −13 6
4

13 6
16

0 852
. . . eV

(ii) Required energy to jump electron to the ground state from the 3rd excited state

E = E4 − E1

= − − −FHG
I
KJ

13 6
4

13 6
12 2

. .

= − 0.85 + 13.6 = 12.75 eV
∴ Wavelength of the photon emitted is

λ =
hc
E

As, E hc=F
HG

I
KJλ

⇒ λ =
6 63 10 3 10

12 75 1 6 10

34 8

19
.

. .
× × ×

× ×

−

−

=
19 878 10

20 4

7.
.
× −

 = 0.974 × 10−7

= 974 Å.
Q. 8. If the average life time of an excited state of hydrogen is of the order of 10−8 s, estimate how many

rotation an electron makes when it is in the state n = 2 and before it suffers a transition to state
n = 1. Bohr radius = 5.3 × 10−11 m.

Ans. Velocity of electron in the nth orbit of hydrogen atom

vn =
v
n n
1

62 19 10
=

×.
m s

If n = 2, vn = 
2 19 106. ×

n
m s

Radius of n = 2 orbit, rn = n2r1 = 4 × Bohr radius

rn = 4 × 5.3 × 10−11 m
Number of revolutions made in 1 sec

=
v

r
n

2
2 19 10

2 2 4 5 3 10

6

11π π
=

×
× × × × −

.
.

Number of revolutions made in 10−8 s = 
2 19 10 10

2 2 4 5 3 10

6 8

11
.

.
× ×

× × × ×

−

−π
 = 8.22 × 106 revolutions.

Q. 9. A hydrogen atom initially in the ground state absorbs a photon; which excites it to the n = 4 level.
Determine the wavelength and frequency of photon.

Ans. As,
1
λ

= R
n n
1 1

1
2

2
2−

F
HG

I
KJ

⇒
1
λ

= 1 09 10 1
1

1
4

1 09 10 15
16

7
2 2

7. .× −FHG
I
KJ = × ×
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or, λ = 16
1 09 10 15

9 8 107
8

.
.

× ×
= × − m

∴ Frequency,   ν =
c
λ

=
×
× −

3 10
9 8 10

8

8.
 = 3.06 × 1015 s−1.

Q. 10. A doubly ionised lithium atom is hydrogen-like with atomic number 3:
(i) Find the wavelength of the radiation required to excite the electron in Li++ from the first to

the third Bohr orbit. (Ionisation energy of the hydrogen atom equals 13.6 eV.)
(ii) How many spectral lines are observed in the emission spectrum of the above excited system?

Ans. (i) The energy difference of electron in Li++ between the first and the third orbit
= E3 − E1

∴ E3 − E1 = 13.6 × Z2 
1 1

1
2

2
2n n

−
F
HG

I
KJ

= 13.6 × (3)2 
1

1
1

32 2−FHG
I
KJ

= 13.6 × 9 × 
8
9

 × 1.6 × 10−19 J

Therefore, the equivalent wavelength λ is given by

E3 − E1 =
hc
λ

or, λ =
hc

E E3 1−

=
6 63 10 3 10
13 6 8 1 6 10

34 8

19
.

. .
× × ×
× × ×

−

−

= 1.137 × 10−8 m
= 113.7 Å.

(ii) The following three spectral lines are observed
due to the following transitions:
3rd to 1st orbit
3rd to 2nd orbit
2nd to 1st orbit

III. LONG ANSWER TYPE QUESTIONS
Q. 1. A single electron, orbits around a stationary nucleus of

charge ze , where z is a constant and e is the electronic charge. It requires 47.2 eV to excite the
electron from the second Bohr orbit to 3rd Bohr orbit. Find,

(i) The value of z.
(ii) The energy required to excite the electron from the third to the fourth Bohr orbit.

(iii) The wavelength of electromagnetic radiation required to remove the electron from the first
Bohr orbit to infinity.

(iv) The kinetic energy, potential energy and angular momentum of the electron in the first Bohr
orbit.

E3

E2

E1

Fig. 12.6
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(v) The radius of the first Bohr orbit.
(Ionisation energy of hydrogen atom = 13.6 eV. Bohr radius = 5.3 × 10−11 m, velocity of
light = 3 × 108 m/s and Planck’s constant = 6.6 × 10−34 Js)

Ans. (i) For a general hydrogen-like atom

En2
 − En1

= Z E
n n

2
0

1
2

2
2

1 1−
F
HG

I
KJ eV

where E0 is the ionisation energy of hydrogen atom

∆E = Z2
2 213 6 1

2
1

3
47 2× −FHG

I
KJ =. .

or, Z2 13 6
36

5× ×. = 47.2

Z2 =
47 2 36
13 6 5

25
.
.

×
×

=

Z = 5

(ii) E4 − E3 = 5 13 6 1
3

1
4

2
2 2× −FHG
I
KJ. eV

= 25 × 13.6 × 
7

144
 = 16.53 eV

Energy required to excite the electron from the third to the fourth Bohr orbit
= 16.53 eV

(iii) E∞ − E1 = Z2
213 6 1

1
1× −
∞

F
HG

I
KJ.  = 13.6 × 25 eV

λ =
−

−
× × ×

=
∆ × × ×

34 8

19
(6.6 10 ) 3 10
13.6 25 1.6 10

hc
E

= 0.03640 × 10−7 = 36.4 × 10−10

= 36.4 Å
The wavelength of electromagnetic radiation required to remove the electron from
first Bohr orbit to infinity = 36.4 Å.

(iv) Kinetic energy of first Bohr orbit is numerically equal to the energy of the orbit
E1 = − Z2 E0 = − 25 × 13.6 eV

∴ K.E. = 25 × 13.6 × 1.6 × 10−19 J = 544 × 10−19 J
Potential energy of electron = − 2 × K.E.

= − 2 × 544 × 10−19 J
= − 1088 × 10−19 J

Angular momentum of the electron

L = mvr = 
nh h
2 2π π

=

ä n = 1 [For Ist Bohar arbit]

L =
6 6 10

2

34. × −

π
 = 1.05 × 10−34 Js
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(v) Radius r1 of the first Bohr orbit

rn =
n r

Z

2
0 for n = 1,

r1 =
1 5 3 10

5

2 11× × −.
 = 1.06 × 10−11 m.

Q. 2. Hydrogen atom in its ground state is excited by means of monochromatic radiation of wavelength
975 Å. How many different lines are possible in the resulting spectrum ? Calculate the longest
wavelength amongst them. You may assume the ionization energy for hydrogen atom as 13.6 eV.

Ans. Ionization energy for hydrogen atom = 13.6 eV.
The energy of monochromatic radiation of wavelength 975 Å

E = hc
λ

=
× × ×

× × ×

−

− −
6 63 10 3 10

975 10 1 6 10

34 8

10 9
.

.
eV

= 12.75 eV
(ä 1 eV = 1.6 × 10−19 J)

∴ 12.75 = 13 6 1
1

1
2 2. −FHG
I
KJn

1
2n

= 1 12 75
13 6

0 85
13 6

1
16

− = =
.
.

.
.

∴ n = 4
∴ Number of lines possible in the resultant spectrum = 6, as shown in Fig. 12.7 below.
The longest wavelength will be emitted for transition from 4th orbit to 3rd orbit with an
energy.

E En n2 1
− = E0Z2 

1 1

1
2

2
2n n

−
L
NMM

O
QPP

E4 → 3 = 13 6 1
3

1
4

13 6 1
9

1
162 2. .−FHG

I
KJ = −FHG

I
KJ

∵ Z = 1
n = 4

n = 3

n = 2

n = 1
Fig. 12.7

E4 → 3 = 13.6 × 7
144

eV  = 13.6 × 
7

144
 × 1.6 × 10−19 J

The longest wavelength,

λ =
hc

E4 3→
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=
6 63 10 3 10 144

13 6 7 1 6 10

34 8

19
.

. .
× × × ×

× × ×

−

− m

λ = 1.88 × 10−6 m = 18800 Å.
Q. 3. In a hydrogen like atom the ionisation energy equals 4 times Rydberg’s constant for hydrogen.

What is the wavelength of radiations emitted when a jump takes place from the first excited state
to the ground state? What is the radius of first Bohr’s orbit?

Ans. The ionization energy E of a hydrogen-like Bohr atom of atomic number z is given by

E = − = −Rz
k z me
n h

2
2 2 4

2 2
2π

where the Rydberg constant

R =
2 2 4

2 2
π kme
n h

 = 2.2 × 10−18 J

As ionization energy
E = 4 × Rydberg constant

= 4 R, we have
∴ 4 R = RZ2

or, Z = 2
(i) Energy of radiation emitted E when the electron jumps from the first excited state to

the ground state is given by

E = RZ2
2 2

1
1

1
2

−FHG
I
KJ

= 4 1 1
4

R −FHG
I
KJ

= 3 R
= 3 × 2.2 × 10−18 J

or, E = 6.6 × 10−18 J.
Wavelength of the radiation emitted,

λ =
hc
E

=
6 6 10 3 10

6 6 10
3 10

34 8

18
8.

.
× × ×

×
= ×

−

−
− m

(ii) Radius of the first Bohr orbit

=
Bohr radius of hydrogen atom

Z

=
5 10

2

11× −

 = 2.5 × 10−11 m.

Q. 4. Draw a labelled diagram for α-particle scattering experiment. Give Rutherford’s observation and
discuss the significance of this experiment. Obtain the expression which helps us to get an idea
of the size of a nucleus, using these observations.

Ans. See text.
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Q. 5. If the short series limit of the Balmer series for hydrogen is 3646 Å, calculate the atomic number
of the element which gives X-ray wavelengths down to 1.0 Å. Identify the element.

Ans. The short limit of the Balmer series is given by

ν =
1 1

2
1

2 2λ
= −

∞
F
HG

I
KJR

ν =
R
4

∴ R =
4 4

3646
1010 1

λ
= × −m

Further the wavelengths of the Kα series are given by the relation

ν =
1 1 1

1
12

2 2λ
= − −FHG

I
KJR Z

n
b g

The maximum wave number corresponds to n = ∞ and, therefore, we must have

ν =
1
λ

 = R (Z − 1)2

or (Z − 1)2 =
1 3646 10

4 1 10
911 5

10

10Rλ
=

×
× ×

=
−

− .

∴ (Z − 1) = 911 5.
or ≅ 30.2
or Z = 31.2 ≅ 31
Thus, the atomic number of the element concerned is 31.
The element having atomic number Z = 31 is Gallium.

QUESTIONS ON HIGH ORDER THINKING SKILLS (HOTS)
Q. 1. Using Bohr’s formula for energy quantisation, determine:

(i) the longest wavelength in the Lyman series of hydrogen atom spectrum.
(ii) the excitation energy of the n = 3 level of He+ atom.

(iii) the ionisation potential of the ground state of Li++ atom.
Ans. (i) Wavelengths of radiation of the Lyman series are given by

λn =
64

1

3
0
2 3

4

2

2 2
π ε h c
me

n
n −

F
HG

I
KJ

n = 2 corresponds to the longest wavelength
= 1225 Å

(ii) The energy required to excite the electron from the ground state (n = 1) to the
n = 3 state is

E3 − E1 =
mZ e

h

2 4

2
0
2 2 2 232

1
1

1
3π ε

−FHG
I
KJ

= 48.1 eV
where Z = 2



Atoms    629

(iii) Ionisation energy is given by

E∞ − E1 =
mZ e

h

2 4

2
0
2 232π ε

(with Z = 3)

= 122 eV
Thus, ionisation potential is 122 V.

Q. 2. Which state of the triply ionized Be+++ has the same orbital radius as that of the ground state of
hydrogen? Compare the energies of two states.

Ans. Radius of nth orbit is given by

r =
n h
mKZe

2 2

2 24π
i.e., r ∝ 

n
Z

2

For hydrogen, Z = 1, n = 1 in ground state

∴
n
Z

2
=

1
1

1
2

=

For Beryleum, Z = 4, As orbital radius is same, n
Z

2
1=

∴ n2 = 1 × Z = 1 × 4 = 4

n = 4 2=
Hence n = 2 level of Be has same radius as n = 1 level of hydrogen.

Now, energy of electron in nth orbit is E = −
2 2 2 2 4

2 2
π mK Z e

n h

∴ E ∝
Z
n

2

2

E

E
Be

H

a f
a f

=
Z n

Z n
Be

H

2 2

2 2
16 4
1 1

4= =

Q. 3. Prove that the ionisation energy of hydrogen atom is 13.6 eV.
Ans. We know that

E = − 2 2 2 2 4

2 2
π mK Z e

n h
(n = 1, Z = 1)

W = k me
h n n

2
2 4

2
1
2

2
2

2 1 1π −
F
HG

I
KJ

Ionisation energy is the energy required to remove an electron from ground state to
infinity.
Here, n1 = 1, n2 = ∞

∴ W = k me
h

2
2 4

2
2 1

1
1π −
∞

F
HG
I
KJ

= k me
h

2
2 4

2
2π
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or, W =
− −

−
× × × × × ×

×

9 2 2 31 19 4

34 2
(9 10 ) 2 (3.142) 9 10 (1.6 10 )

J
(6.63 10 )

= 21.45 × 10−19 J = 
21 45 10

1 6 10

19

19
.
.

×
×

−

− eV  = 13.4 eV.

Q. 4. A positronium atom is a bound state of an electron (e−) and its antiparticle, the positron (e+)
revolving round their centre of mass. In which part of the em spectrum does the system radiate
when it de-excites from its first excited state to the ground state?

Ans. In an ordinary atom, as first approximation, we ignore the motion of the nucleus, being
too heavy. In a positronium atom, a positron replaces proton of hydrogen atom. As
electron and positron masses are equal, the motion of the positron cannot be ignored.
We consider motion of electron and positron about their centre of mass. A detailed analysis
(beyond the scope of this book) shows that formulae of Bohr model apply to positronium
atom provided that we replace me by what is known as reduced mass of the electron. For
positronium, the reduced mass is me/2. In the transition n = 2 to n = 1, the wavelength of
radiation emitted is double than that of the corresponding radiation emitted for a similar
transition in hydrogen atom, which has a wavelength of 1217 Å; and hence is equal to 2
× 1217 = 2434 Å. This radiation lies in the ultra-violet part of the electromagnetic spectrum.

Q. 5. The wavelength of the first member of Lyman series is 1216 Å. Calculate the wavelength of second
member of Balmer series.

Ans.
1
λ

= R
n n
1 1

1
2

2
2−

F
HG

I
KJ

For first member of Lyman series, n1 = 1 and n2 = 2.

∴
1

1λ
= R 1

1
1
42 −FHG
I
KJ

or
1

1λ
=

3
4
R

or λ1 =
4

3R
...(i)

For second member of Balmer series, n1 = 2, n2 = 4
1

2λ
= R R1

2
1

4
3
162 2−FHG

I
KJ =

or, λ2 =
16
3R

...(ii)

Dividing equation (ii) by (i), we get
λ
λ

2

1
=

16
3

3
4

4
R

R× =

or λ2 = 4 λ1 = 4 × 1216 Å = 4864 Å.
Q. 6. Determine the speed of electron in n = 3 orbit of He+. Is the non-relativistic approximation valid?

Ans. The speed of electron in nth orbit is given by

v =
2 2π KZe

nh
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For He, Z = 2, n = 3

v =
π 22 2

3
K e

h

=
−

−
× × × ×

× ×

9 19 2

34
4 3.14 9 10 (1.6 10 )

3 6.6 10
v = 1.46 × 106 m/s

Now,
v
c

=
1 46 10

3 10
0 048

6

8
.

.
×

×
=

which is much less than 1. Hence non-relativistic approximation is true.
Q. 7. Using Rydberg formula, calculate the wavelengths of the first four spectral lines in the Balmer

series of hydrogen atom spectrum.
Ans. The Rydberg formula is

E = E Z
n n0

2

1
2

2
2

1 1−
L
NMM

O
QPP

hc
λ

= E Z
n n0

2

1
2

2
2

1 1
−

L
NMM

O
QPP

E0 = – 13.6 eV

∴ λ12 = hc

n
21 76 10 1

4
119

1
2. × × −

F
HG

I
KJ

−

m

E0 = – 13.6 × 1.6 × 10–19 J
E0 = – 21.76 × 10–19 J

hc
λ12

= – 21.76 × 10–19 
1

2
1

2
1
2−

L
NMM

O
QPPn

=
−

−
× × ×

× × −

34 8 2
1

19 2
1

6.63 10 3 10 4
m

21.76 10 ( 4)
n

n

λ12 = −× =
− −

2 2
71 1

2 2
1 1

3.653 3653
10 m Å

( 4) ( 4)
n n

n n
The wavelengths of the first four lines in the Balmer series correspond to transitions from
n1 = 3, 4, 5, 6 to n2 = 2.
Substituting n1 = 3, 4, 5 and 6, we get

λ32 = 6575 Å, λ42 = 4870 Å
λ52 = 4348 Å and λ52 = 4109 Å.

Q. 8. Calculate the radius of the first orbit of hydrogen atom. Show that the velocity of electron in the

first orbit is 
1

137
 times the velocity of light.

Ans. Since, r =
n h
mKZe

2 2

2 24π
Using n = 1 for 1st orbit

h = 6.6 × 10−34 Js
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m = 9 × 10−31 kg
K = 9 × 109 Nm2 C−2

Z = 1 for hydrogen, e = 1.6 × 10−19 coulomb
we get, r = 0.53 × 10−10 m

Also, v =
 π π

=    

2 22 2Ke Kec
nh n ch

=
−

−
× × ×

× × ×
× × ×

9 19 2

8 34
9 10 (1.6 10 )222

1 7 3 10 6.6 10
c

v =
1

137
c .

Q. 9. The energy levels of hydrogen atoms are as
shown in Fig. 12.8. Which of the shown
transition will result in the emission of a
photon of wavelength 275 nm?
Which of the transition corresponds to
emission of radiation of (i) maximum and
(ii) minimum wavelength?

Ans. The energy of photon of wavelength
275 nm

∆E =
hc
λ

=
× × ×

×

−

−
6 6 10 3 10

275 10

34 8

9
.

 J

=
6 6 10 3 10

275 10 1 6 10

34 8

9 19
.

.
× × ×

× × ×

−

− −  eV

=
6 6 3

275 1 6
102.

.
×
×

×  eV

= 6.0 eV
Thus transition is the result.

(i) Transition A
(ii) Transition D.

Q. 10. The short wavelength limits of the Lyman, Paschen and Balmer series, in the hydrogen spectrum,
are denoted by λL, λP and λB respectively. Arrange these wavelengths in increasing order.

Ans. λL , λB and λP.
Q. 11. The ground state energy of hydrogen atoms is – 13.6 eV.

(i) Which are the potential and kinetic energy of an electron in the third excited state?
(ii) If the electron jumps to the ground state from the third excited state. Calculate the frequency

of photon emitted.
Ans. (i) In hydrogen atom in the ground state

E = – (K.E.) = 
1
2

( )P.E.

∴ Potential energy of electron in third excited state

=
2
4

2 13 6
162

( )
( )

.E
= −

×
 eV

= – 1.7 eV

A

B C

D

0 eV

–2 eV

–4.5 eV

–10 eV
Fig. 12.8
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and kinetic energy of an electron

= − 1
2

17( . ) = 0.85 eV

(ii) ν =
∆E
h

=
−

+L
NM

O
QP

×
×

−

−
13 6
4

13 6
1

1 6 10
6 6 102 2

19

34
.

( )
.

( )
.
.

=
11 9 1 6 10

6 6 10

19

34
. .

.
× ×

×

−

−  Hz

≈ 2.9 × 1015 Hz.

MULTIPLE CHOICE QUESTIONS
1. If an electron jumps from 1st orbit to 2rd orbit, then it will

(a) absorb energy (b) release energy
(c) no gain of energy (d) none of these

2. The wavelength of the first line of Balmer series is 6563 Å. The Rydberg constant for
hydrogen is about

(a) 1.09 × 107 per m (b) 1.09 × 108 per m
(c) 1.09 × 109 per m (d) 1.09 × 105 per m

3. The Rydberg constant R for hydrogen is

(a) R = −
L
NM
O
QP

1
4

2
0

2 2

2πε
π. me
Ch

(b) R = 1
4

2
0

2 4

2πε
πF

HG
I
KJ .

me
Ch

(c) R = 
1

4
2

0

2 2 4

2 2πε
πF

HG
I
KJ . me

C h (d) R = 1
4

2
0

2 2 2

3πε
πL

NM
O
QP

. me
Ch

4. The wavelength of the first line of Lyman series of hydrogen is 1216 Å. The wavelength of
the second line of the same series will be

(a) 912 Å (b) 1026 Å (c) 3648 Å (d) 6566 Å
5. In 88Ra226 nucleus, there are

(a) 138 protons and 88 neutrons (b) 138 neutrons and 88 protons
(c) 226 protons and 88 electrons (d) 226 neutrons and 138 electrons

6. The angular momentum of electron in nth orbit is given by
(a) nh (b) n/2πn (c) nh/2π (d) n2h/2π

7. The ionisation energy of 10 times ionised sodium atom is
(a) 13.6 eV (b) 13.6 × 11 eV (c) 13.6/11 eV (d) 13.6 × (11)2 eV

8. The ratio of longest wavelength and the shortest wavelength observed in the five spectral
series of emission spectrum of hydrogen is

(a) 4/3 (b) 525/376 (c) 25 (d) 960/11
9. The absorption transition between the first and the fourth energy states of hydrogen atom

are 3. The emission transitions between these states will be
(a) 3 (b) 4 (c) 5 (d) 6
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10. According to Bohr’s theory, the moment of momentum of an electron revolving in second
orbit of hydrogen atom will be

(a) 2πrh (b) πh (c) h
π

(d) 2h
π

11. When an electron jumps from the fourth orbit to the second orbit, one gets the
(a) Second line of Paschen series (b) Second line of Balmer series
(c) First line of Pfund series (d) Second line of Lyman series

12. Which of the following transitions in a hydrogen atom emits the photon of highest frequency?
(a) n = 2 to n = 6 (b) n = 6 to n = 2
(c) n = 1 to n = 2 (d) n = 2 to n = 1

13. The ratio of minimum to maximum wavelength in Balmer series is
(a) 5 : 9 (b) 5 : 36 (c) 1 : 4 (d) 3 : 4

14. A nucleus represented by the symbol ZXA has
(a) Z protons and A neutrons (b) A protons and (Z – A) neutrons
(c) Z neutrons and (A – Z) protons (d) Z protons and (A – Z) neutrons

15. An element with atomic number Z = 11 emits Ka-X-ray of wavelength λ. The atomic number
of element which emits Ka-X-ray of wavelength 4λ is

(a) 6 (b) 4 (c) 11 (d) 44

Answers
1. (a) 2. (a) 3. (d) 4. (b) 5. (b)
6. (c) 7. (d) 8. (c) 9. (d) 10. (c)

11. (b) 12. (b) 13. (a) 14. (d) 15. (a)

TEST YOUR SKILLS
1. Write two observations of Rutherford’s alpha scattering experiment.
2. Write two conclusions drawn on the basis of alpha scattering experiment.
3. State the limitation of alpha scattering experiment.
4. State the Bohr’s postulates of atomic theory.
5. Is Bohr’s atomic theory applicable only for hydrogen atom?
6. Explain the Bohr’s quantisation condition on the basis of de-Broglie hypothesis.
7. Explain the different spectral lines in hydrogen atom.
8. Does the Bohr’s atomic theory explain the variation of intensity of different spectral line on the

basis of frequency of photons emitted? Justify your answer.
9. Obtain an expression for the (i) velocity and (ii) radius of the electron in its orbit.

10. Deduce an expression for the total energy of electron in its orbit.
11. Find the ratio of minimum wavelengths of Lyman series and Paschen series.
12. Find the ratio of minimum frequency of photon obtained in Balmer series and Paschen series.
13. Calculate the angular momentum of an electron in the third orbit of hydrogen atom.
14. Find the frequency of photon emitted due to transition of electron in hydrogen atom from

second excited state to the ground state.
15. What will be the kinetic and potential energy of an electron in hydrogen atom in third orbit.

(Take total energy of electron in its ground state in – 13.6 eV).
16. What does the negative total energy of electron in its excited state signify?


