

Atoms and Molecules

TOPICS COVERED

- 3.1 Atoms, Symbols of Elements, Atomic mass, Molecules of Elements and Compounds, Ions, Writing Chemical Formula, Molecular Mass, Formula Unit Mass
- 3.2 Dalton Atomic Theory, Laws of Chemical Combination
- 3.3 Mole Concept

CHAPTER MAP

QUICK REVISION NOTES

- Atoms are the smallest particles which can take part in a chemical reaction.
- Lavosier's Law of conservation of mass, states that "Matter can neither be created nor be destroyed".
- Proust invented the Law of constant proportions. It states that "In a chemical compound elements are always present in a definite proportion by mass."
- John Dalton gave "Dalton's atomic theory."
- A molecule is made up of two or more atoms and is capable of independent existence under ordinary conditions. It shows all the properties of a substance.
- IUPAC (International Union of Pure and Applied Chemistry) gave symbols of the atoms of the different elements.
- Atomicity is the number of atoms present in a molecule.
- Atomic mass is the mass of an atom of an element.
- Atomic mass unit (*u*) also called as unified mass has been accepted to express the atomic and molecular mass of the elements and the compounds.
- It is defined as $\frac{1}{12}$ th of the mass of an atom of C-12. It is denoted by '*u*'.

•
$$1 u = \frac{1}{12} \times \text{Mass of } 1 \text{ atom of } {}_{6}^{12}\text{C}$$

- $1 u = 1.66 \times 10^{-27} \text{ kg}$
- Atomic mass of H = 1 u, N = 14 u, O = 16 u, C = 12 u, Na = 23 u, Mg = 24 u, Ca = 40 u, Cl = 35.5 u, Al = 27 u, Fe = 56 u.
- Atoms of most of the elements are very reactive and do not exist freely.
- He, Ne, Ar, Kr, Xe, Rn are the atoms of noble gases which are chemically least reactive and can exist as free as a single atom (monoatomic).
- Atoms of other elements combine together to form molecules or ions.
- Ions are electrically charged atoms. Positive ions are called cations whereas negative ions are called anions.
- Homoatomic molecules contain atoms of same elements, e.g. H₂, O₂, N₂, O₃, P₄, S₈.
- Heteroatomic molecules contain atoms of different elements, e.g. H₂O, NH₃, CH₄, H₂S, etc.
- The chemical formula of a compound shows the ratio of its constituent elements and the number of atoms of each combining element.
- Those ions which are made up of more than two atoms are called polyatomic ions.
- Molecular mass of a compound can be calculated as the sum of the atomic mass of each constituent element multiplied by the number of atoms of that element. It is expressed in 'u'.
- Formula unit mass of a substance is the sum of atomic masses of atoms present in the formula unit of a compound.
- Mole is defined to be 6.022×10^{23} atoms, molecules or ions or particles of a substance.
- 1 mole of a atom of an element has a mass equal to the gram atomic mass of that element.
- Avogadro's number is equal to 6.022×10^{23} atoms, molecules or ions present in 1 mole of a substance.
- Important Formulae:

(*i*) Number of moles (*n*) = $\frac{\text{Given mass}}{\text{Molar mass}} = \frac{m}{M}$

(*ii*) Number of moles (*n*) = $\frac{\text{Given number of molecules}}{\text{Avogadro's Number}} = \frac{\text{N}}{\text{N}_0}$

$$\therefore \frac{m}{M} = \frac{N}{N_0}$$
$$\therefore \boxed{m = \frac{M \times N}{N_0}}$$

(iii) Percentage of an element in a compound

$$= \frac{\text{Total mass of an element in the compound}}{\text{Molar mass of the compound}} \times 100$$
(*iv*) Percentage of element = $\frac{\text{Given mass of element}}{\text{Given mass of compound}} \times 100$

1. Atoms, Symbols of Elements, Atomic mass, Molecules of Elements and Compounds, Ions, Writing Chemical Formula, Molecular Mass, Formula Unit Mass

Atoms

It is the smallest particle which may or may not exist freely. It is the smallest unit of an element which takes part in a chemical reaction.

Characteristics:

- Atoms are building blocks of matter.
- They are very small in size around 100 picometers (10^{-12} m)
- Atomic radius is measured in nanometers $(1 \text{ nm} = 10^{-9} \text{ m})$.
- Atoms of most of the elements do not exist freely.

Symbols of Element

- It is a symbolic representation of names of elements.
- Dalton was the first scientist to use the symbols of elements.
- He used symbols which meant a definite quantity of that element, that is, one atom of an element.
- Berzelius suggested that the symbols of elements can be made by first one or two letters of the name of elements.
- In the beginning, the names of elements were derived from the names of places from where they had been found for the first time, e.g. the name of copper was taken from Cyprus.
- Some names were taken from specific colours that the element possesses, e.g. Gold was taken from the English word meaning yellow.
- IUPAC approved the name of elements in those days.
- The symbols of some elements are first letters of their names and in many elements it is the first two letters. First letter is written in capital and second in small case, e.g. 'Al' for Aluminium, Co for Cobalt, etc.
- In some cases, symbols of elements are the first letter and other letter appearing in their name, e.g. Chlorine (Cl), Zinc (Zn).
- Some names of elements have been derived from the Latin, Greek or German words.
- Latin name of iron is Ferrum (Fe), Sodium is Natrium (Na), Potassium is Kalium (K).
- They represent one atom of an element, e.g. as shown in the following table:

	Element	Symbol		Element	Symbol		Element	Symbol		Element	Symbol
1.	Aluminium	Al	12.	Fluorine	F	24.	Mercury	Hg	36.	Manganese	Mn
2.	Argon	Ar	13.	Hydrogen	Н	25.	Iodine	Ι	37.	Gallium	Ga
3.	Arsenic	As	14.	Helium	He	26.	Iron	Fe	38.	Selenium	Se
4.	Boron	В	15.	Lithium	Li	27.	Zinc	Zn	39.	Indium	In
5.	Barium	Ba	16.	Nitrogen	Ν	28.	Tin	Sn	40.	Germanium	Ge
6.	Beryllium	Be	17.	Oxygen	0	29.	Potassium	K	41.	Krypton	Kr
7.	Bromine	Br	18.	Neon	Ne	30.	Silicon	Si	42.	Xenon	Xe
8.	Carbon	С	19.	Sodium	Na	31.	Sulphur	S	43.	Radon	Rn
9.	Calcium	Са	20.	Magnesium	Mg	32.	Uranium	U			
10.	Chlorine	Cl	21.	Gold	Au	33.	Phosphorus	Р			
11.	Cobalt	Co	22.	Silver	Ag	34.	Chromium	Cr			
12.	Copper	Cu	23.	Lead	Pb	35.	Nickel	Ni			

Symbols of Some Elements

Atomic Mass

The mass of an atom is called its atomic mass.

• **Relative atomic mass:** It is defined as number of times the given atom of an element is heavier than 1/12th of the mass of atom of carbon-12 isotope.

Relative atomic mass of an element is also defined as average mass of an atom as compared to 1/12th of the mass of one atom carbon-12, e.g.

H = 1u, C = 12u, N = 14u, O = 16u, Na = 23u, Mg = 24u, Al = 27u, S = 32u, Cl = 35.5u, Ca = 40u, K = 39u, P = 31u, Cu = 63.5u, Zn = 65u, Fe = 56u

• Unified mass (atomic mass unit): It is equal to the mass of 1/12th of the mass of 1 atom of C-12 isotope.

Molecule of Elements

It is mostly a group of two or more atoms which are chemically bonded together, i.e. strongly held together by forces of attraction.

An atom is the smallest particle of an element which is capable of free existence.

Atoms of same or different elements join together to form a molecule. Molecules of the elements are of the following types:

- **Monoatomic:** These elements exist as single atoms, e.g. He, Ne, Al, Kr, Xe, Rn, Na, K, Fe, Al, Cu, C.
- **Diatomic:** These molecules of elements exist as two atoms bonded together, e.g. O_2 , N_2 , Br_2 , Cl_2 , H_2 , I_2 .
- Triatomic: These molecules of elements contain three atoms, e.g. Ozone (O₃)
- Tetratomic: These molecules of elements are made up of four atoms, e.g. P₄
- Octatomic: These molecules of elements are made up of eight atoms, e.g. S_8

Molecules of Compounds

Atoms of the different elements combine together in a definite proportion to form molecules of the compounds, e.g. H_2O (water), NH_3 (ammonia), CO_2 (Carbon dioxide), CH_4 (Methane), CO (Carbon monoxide).

Each molecule has atoms in a fixed ratio by mass, e.g. in H_2O it is 2 : 16 i.e., 1 : 8. In NH_3 the ratio is 14 : 3 by mass.

Binary Compounds: Those compounds which are made up of two different elements are called binary compounds. Some examples are as follows:

If valencies of two elements are the same, we can write the simplest ratio, e.g.

lons

The charged species are known as **ions**.

- Positively charged ions are called cations, e.g. K⁺, Na⁺, Ca²⁺, Mg²⁺, Al³⁺, Fe²⁺.
 Negatively charged ions are called anions, e.g. Cl⁻, Br⁻, I⁻, O²⁻, S²⁻, N³⁻.
- A group of atoms carrying a charge is called a **polyatomic ion**.
- Those compounds which are formed from ions of opposite charge in a fixed proportion are called **ionic compounds**, e.g. CaO has Ca²⁺ and O²⁻ ions in the ratio of 5 : 2, MgO has Mg²⁺ and O²⁻ ions in the ratio of 3 : 2, NaCl has Na⁺ and Cl⁻ ions in ratio of 23 : 35.5 by mass.

Molecular Mass

It is the sum of atomic masses of all the atoms in a molecule of that substance, e.g. molecular mass of $H_2O = 2H + 1O = 2 \times 1 + 1 \times 16 = 18 u$.

Formula Unit Mass

It is the sum of atomic mass of ions and atoms present in a formula unit of an ionic compound, e.g. NaCl has 23 + 35.5 = 58.5 u as its formula unit mass.

Rules for Writing Chemical Formula

- 1. We first write symbol of elements which are present in a compound.
- 2. Below the symbol of every element, we write its valency.
- 3. Now we cross over the valencies of combining atoms.
- 4. With first atom, we write the valency of second atom (as a subscript).
- 5. With second atom, we write the valency of first atom (as a subscript).
- 6. The valencies or charge on an atom must be balanced (equal).
- 7. When metals and non-metals are present in a compound, symbol of metals are written first and then non-metals are written on the right side.
- 8. Compounds which are formed with polyatomic ions has ions enclosed in a small bracket before writing the number to indicate the ratio of ions.

An ion has the same mass as the atom from which it is made by chemical formula. It is a symbolic representation of the composition of a compound.

Valency: It is defined as the number of electrons lost or gained or shared by an element.

- It helps to find out only how many atoms of an element are combined with the atoms of another element.
- Valency can be thought of as hands or arms of an element.

Valency	Name of ion	Symbol	Non-metallic element	Symbol	Polyatomic ions	Symbol
1.	Sodium	Na ⁺	Hydrogen	H^+	Ammonium	$\mathrm{NH_4}^+$
	Potassium	K ⁺	Hydride	H^{-}	Hydroxide	OH-
	Silver	Ag^+	Chloride	Cl-	Nitrate	NO_3^-
	Copper (I)	Cu ⁺	Bromide	Br^{-}	Nitrite	$\mathrm{NO_2}^-$
	Mercury (I)	Hg^{+}	Iodide	I-	Hydrogen Carbonate	HCO_{3}^{-}
			Fluoride	F^-	Hydrogen Sulphate	HSO_4^-
					Hydrogen Sulphite	HSO_3^-
					Permanganate	MnO_4^-
2.	Magnesium	Mg^{2+}	Oxide	O ^{2–}	Carbonate	CO_3^{2-}
	Lead	Pb ²⁺	Sulphide	S^{2-}	Sulphite	SO_3^{2-}
	Calcium	Ca ²⁺			Sulphide	S^{2-}
	Zinc	Zn ²⁺			Sulphate	SO_4^{2-}
	Copper (II)	Cu ²⁺			Chromate	${ m CrO}_4^{2-}$
	Iron (II)	Fe^{2+}			Dichromate	$\mathrm{Cr}_2\mathrm{O}_7^{2-}$
	Mercury (II)	Hg^{2+}			Manganate	MnO_4^{2-}
3.	Aluminium	Al ³⁺	Nitride	N ³⁻	Phosphate	PO_4^{3-}
	Chromium (III)	Cr^{3+}	Phosphide	P ³⁻	Phosphite	PO_{3}^{3-}
	Iron (III)	Fe ³⁺			Chlorate	ClO_3^-
	Bismuth	Bi ³⁺			Meta-aluminate	AlO_2^-

• Variable Valency: Some elements show more than one valency called variable valency. A Roman numeral shows their valency in the brackets, e.g. Copper (I), Copper (II), Iron (II), Iron (III), Mercury (I), Mercury (II).

= Exercise 3.1

I. Ve	ery Short Answer Type Questions	(1 Mark)
1.	What is meant by the term chemical formula?	[NCERT]
2.	How many atoms are present in a:	
	(i) H_2S molecule (ii) PO_4^{3-} ion?	[NCERT]
3.	Name the unit in which atomic radius is measured.	[DOE]
4.	Define molecular mass.	[DOE]
5.	What is the formula unit mass?	[DOE]
6.	Name the element used as a standard for atomic mass unit.	[DOE]
7.	In what form does oxygen occur in nature?	[HOTS] [<i>DOE</i>]
8.	In what form noble gases exist in nature?	[HOTS] [<i>DOE</i>]
9.	What is the difference between $2H$ and H_2 ?	[HOTS] [<i>DOE</i>]
10.	Calculate formula unit mass of $Mg(NO_3)_2$. (Mg = 24 u, N = 14	4 u, O = 16 u [HOTS]
11.	Define the atomic mass unit.	[NCERT]
12.	Why is it not possible to see an atom with naked eyes?	[NCERT]
13.	Define atomicity.	[CBSE 2010] [CBSE 2015]
14.	How many atoms are present in one molecule of ozone?	[<i>CBSE</i> 2010]
15.	Give an example of:	
	(a) Triatomic,	
	(b) Polyatomic molecules of elements.	[CBSE 2015] [CBSE 2012]

16.	Define law of const	tant proportion.					[CBSE 2010]
17.	What is the ratio b	between mass of car	rbon and	oxygen in C	$CO_2?$ (C	= 12	2 u O = 16 u
18.	Name the anion an	nd cation present in	n molecul	e of magnes	sium ox	ide.	[CBSE 2012]
19.	An element 'X' has	s valency 3. Write t	he formu	la of its oxic	de.	[<i>C</i>	BSE 2012] [HOTS]
20 .	Write the names o	f compounds (a) Ag	$g_2O(b)$ Cu	ιS.			
21.	Write the symbol f	for following element	nts (a) Ir	ron (b) Potas	ssium		[CBSE 2012]
22.	Give the difference	e between a cation	and an a	nion?			[CBSE 2010]
23.	Write the names o	f the following com	pounds:				
~ ((a) $\operatorname{Al}_2(\operatorname{SO}_4)_3$		(b)	NH ₄ OH	0		[<i>CBSE</i> 2010]
24.	Which of the follow	ving statements is	not true :	about an ato	om?		
	(a) Atoms are not	able to exist indepe	endently.			£]
	(<i>o</i>) Atoms are the	basic units from wi	nich mole	ecules and ic	ons are	IOrm	ied.
	(c) Atoms are arway (d) Atoms aggrega	ays neutrai in natu te in lerge number	re. s to form	the matter	that w	o cor	see feel or touch
25	The chemical sym	hol for nitrogen gas	: ie.	the matter	unat w	e cai	i see, ieei oi toucii.
20.	(a) Ni	(b) $N_{\rm s}$	(<i>c</i>)	N^+	(d)	Ν	
	(0) 111	(0) 2.2	(0)		(4)		[NCERT Exemplar]
26 .	The chemical sym	bol for sodium is:					
	(a) So	(<i>b</i>) Sd	<i>(c)</i>	NA	(d)	Na	
							[NCERT Exemplar]
27.	Which of the follow	ving represents a c	orrect ch	emical form	ula? Na	ame	it.
	(a) CaCl	(b) $BiPO_4$	(c)	$NaSO_4$	(d)	Nas	3
							$I M O E D T E \dots 1 \dots 1$
28. 29.	The oxide of 'Al' ha What is the formu	as a chemical formu la of ammonium ch	ula Al ₂ O ₃ lloride?	. State the v	alency	of A	[NCERT Exemptor] 1. [CBSE 2015] [CBSE 2014]
28. 29. II. S	The oxide of 'Al' ha What is the formu	as a chemical formu la of ammonium ch Questions–I	ıla Al ₂ O ₃ ıloride?	. State the v	valency	of A	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks)
28. 29. II. S 30.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for	as a chemical formu la of ammonium ch Questions–I rmulae of:	ıla Al ₂ O ₃ ıloride?	. State the v	valency	of A	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks)
28. 29. II. S 30.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (<i>a</i>) sodium oxide	as a chemical formu la of ammonium ch • Questions–I rmulae of:	ıla Al ₂ O ₃ ıloride? (b)	. State the v aluminium	valency	of A	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks)
28. 29. II. S 30.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (<i>a</i>) sodium oxide (<i>c</i>) sodium suphid	as a chemical formu la of ammonium ch Questions–I rmulae of: e	ıla Al ₂ O ₃ lloride? (b) (d)	. State the v aluminium magnesiun	valency chlorio n hydro	of A de oxide	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT]
28. 29. II. S 30. 31.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r	as a chemical formula la of ammonium ch Questions–I rmulae of: e elative molecular n elative molecular n	ula Al ₂ O ₃ lloride? (b) (d) nass of w nass of H	. State the v aluminium magnesiun ater (H ₂ O). NO ₃ .	zalency chlorio n hydro	of A de oxide	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT]
 28. 29. II. S 30. 31. 32. 	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (<i>a</i>) sodium oxide (<i>c</i>) sodium suphid (<i>a</i>) Calculate the r (<i>b</i>) Calculate the r Calculate the form	as a chemical formu la of ammonium ch Questions–I rmulae of: e elative molecular n relative molecular n sula unit mass of C	ula Al ₂ O ₃ lloride? (b) (d) nass of w nass of H aCl ₂ .	. State the v aluminium magnesiun ater (H ₂ O). NO ₃ .	valency chlorio n hydro	de de	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT]
 28. 29. II. S 30. 31. 32. 33. 	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (<i>a</i>) sodium oxide (<i>c</i>) sodium suphid (<i>a</i>) Calculate the r (<i>b</i>) Calculate the r Calculate the form What is atomicity?	as a chemical formula la of ammonium ch Questions—I rmulae of: e elative molecular n relative molecular n rula unit mass of C ? Explain with two	ula Al ₂ O ₃ lloride? (b) (d) nass of w nass of H aCl ₂ . examples	. State the v aluminium magnesiun ater (H ₂ O). NO ₃ .	zalency chlorio n hydro	de de	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [DOE]
 28. 29. II. S 30. 31. 32. 33. 34. 	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity?	as a chemical formula la of ammonium ch Questions–I rmulae of: e elative molecular n relative molecular n iula unit mass of C ? Explain with two molecular mass of F	ala Al_2O_3 loride? (b) (d) nass of w nass of W aCl ₂ . examples H_2 and N	. State the v aluminium magnesium ater (H ₂ O). NO ₃ . S. H ₃ [Atomic r	valency chlorio n hydro nass of	de de mide H =	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [DOE] 1 u, N = 14 u] [DOE]
28. 29. II. S 30. 31. 32. 33. 34. 35.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity? Calculate relative Give the names of	as a chemical formula of ammonium che Questions–I rmulae of: e elative molecular n rula unit mass of C P Explain with two molecular mass of H the elements prese	ala Al_2O_3 loride? (b) (d) nass of W nass of H aCl ₂ . examples H_2 and NI ent in the	. State the v aluminium magnesiun ater (H ₂ O). NO ₃ . s. H ₃ [Atomic r following co	valency chlorid n hydro nass of ompoun	de oxide H = nds:	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [DOE] 1 u, N = 14 u] [DOE]
 28. 29. II. S 30. 31. 32. 33. 34. 35. 	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity? Calculate relative Give the names of (a) Quicklime	as a chemical formula la of ammonium ch Questions—I rmulae of: e elative molecular n relative molecular n rula unit mass of C ? Explain with two molecular mass of I the elements prese	ala Al_2O_3 lloride? (b) (d) mass of w mass of w aCl ₂ . examples H_2 and NI ent in the (b)	. State the v aluminium magnesium ater (H ₂ O). NO ₃ . S. H ₃ [Atomic r following c Hydrogen b	valency chlorid n hydro nass of ompoun oromide	de oxide H = nds: e	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [DOE] 1 u, N = 14 u] [DOE]
 28. 29. II. S 30. 31. 32. 33. 34. 35. 	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity? Calculate relative Give the names of (a) Quicklime (c) Baking powder	as a chemical formula la of ammonium ch Questions–I rmulae of: e elative molecular n relative molecular n rula unit mass of C P Explain with two molecular mass of I the elements prese	ala Al_2O_3 loride? (b) (d) mass of w mass of w aCl ₂ . examples H_2 and Ni ent in the (b) (d)	Aluminium aluminium magnesium ater (H ₂ O). NO ₃ . S. H ₃ [Atomic r following co Hydrogen b Potassium	nass of ompour sulpha	de de xide H = nds: e te	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [DOE] 1 u, N = 14 u] [DOE] [NCERT] [NCERT]
28. 29. II. S 30. 31. 32. 33. 34. 35.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity? Calculate relative Give the names of (a) Quicklime (c) Baking powder As per law of defin	as a chemical formula la of ammonium ch Questions–I rmulae of: e elative molecular n relative molecular n rula unit mass of C P Explain with two molecular mass of I the elements prese ite proportions, carl	ala Al_2O_3 loride? (b) (d) mass of W aCl ₂ . examples H_2 and NI ent in the (b) (d) con and control of the pro- ind to pro-	. State the v aluminium magnesium ater (H ₂ O). NO ₃ . s. H ₃ [Atomic r following c Hydrogen b Potassium xygen comb	valency chlorid n hydro nass of ompour oromide sulpha ine in t	de de xide H = nds: e te he ra	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [DOE] 1 u, N = 14 u] [DOE] [NCERT] atio of 3 : 8. Compute f author
28. 29. II. S 30. 31. 32. 33. 34. 35. 36.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity? Calculate relative Give the names of (a) Quicklime (c) Baking powder As per law of defin the mass of oxygen	as a chemical formula of ammonium ch Questions—I rmulae of: e elative molecular n relative molecular n rula unit mass of C P Explain with two molecular mass of H the elements prese ite proportions, card that would be require	ala Al_2O_3 loride? (b) (d) mass of W mass of H aCl ₂ . examples H ₂ and NI ent in the (b) (d) pon and co ired to res	. State the v aluminium magnesium ater (H ₂ O). NO ₃ . s. H ₃ [Atomic r following co Hydrogen b Potassium xygen comb act complete	valency chlorid n hydro nass of ompour oromid sulpha ine in t ly with	of A de xide H = nds: e te he ra 6 g c	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [DOE] 1 u, N = 14 u] [DOE] [NCERT] atio of 3 : 8. Compute of carbon. [CBSE 2016]
28. 29. II. S 30. 31. 32. 33. 34. 35. 36.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity? Calculate relative Give the names of (a) Quicklime (c) Baking powder As per law of defin the mass of oxygen	as a chemical formula of ammonium ch Questions–I rmulae of: e elative molecular n relative molecular n rula unit mass of C P Explain with two molecular mass of F the elements prese ite proportions, carl that would be require	ala Al_2O_3 loride? (b) (d) nass of w nass of w aCl ₂ . examples H_2 and NI ent in the (b) (d) poon and c ired to res HCO ₂ (b)	. State the v aluminium magnesium ater (H ₂ O). NO ₃ . S. H ₃ [Atomic r following co Hydrogen b Potassium xygen comb act complete	a chlorio n hydro nass of ompoun oromida sulpha ine in t ly with	de de xide H = nds: e te he ra 6 g c	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [NCERT] 1 u, N = 14 u] [DOE] [NCERT] atio of 3 : 8. Compute of carbon. [CBSE 2016] [CBSE 2010]
28. 29. II. S 30. 31. 32. 33. 34. 35. 36. 37. 38.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity? Calculate relative Give the names of (a) Quicklime (c) Baking powder As per law of defin the mass of oxygen Find the formula u Select the element	as a chemical formula la of ammonium ch Questions–I rmulae of: e elative molecular n rula unit mass of C 2 Explain with two molecular mass of H the elements prese ite proportions, carl that would be require unit mass of (<i>a</i>) Nat	ala Al_2O_3 (b) (d) mass of W aCl ₂ . examples H_2 and NI ent in the (b) (d) bon and co ired to real HCO_3 (b) (b) condu	. State the v aluminium magnesium ater (H ₂ O). NO ₃ . s. H ₃ [Atomic r following co Hydrogen b Potassium xygen comb act complete Na ₂ CO ₃ ctor of elect	valency chlorid n hydro nass of ompoun oromide sulpha ine in t ly with	of A de xide H = - nds: e te he ra 6 g c	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [NCERT] 1 u, N = 14 u] [DOE] [NCERT] atio of 3 : 8. Compute of carbon. [CBSE 2016] [CBSE 2010] constituent of water
28. 29. II. S 30. 31. 32. 33. 34. 35. 36. 37. 38.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity? Calculate relative Give the names of (a) Quicklime (c) Baking powder As per law of defin the mass of oxygen Find the formula u Select the element (d) non-metal, liqu	as a chemical formula of ammonium ch Questions—I rmulae of: e elative molecular n relative molecular n rula unit mass of C P Explain with two molecular mass of F the elements prese the elements prese nuit mass of (<i>a</i>) National that is (<i>a</i>) ductile, unit mass of (<i>a</i>) National	ala Al_2O_3 (b) (d) (a) (b) (d) (a) (b) (b) (c)	. State the v aluminium magnesium ater (H ₂ O). NO ₃ . S. H ₃ [Atomic r following co Hydrogen b Potassium xygen comb act complete Na ₂ CO ₃ ctor of elect	valency chlorid n hydro nass of ompour oromida sulpha ine in t ly with ricity, (of A de xide H = nds: e te he ra 6 g c	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [NCERT] 1 u, N = 14 u] [DOE] [NCERT] atio of 3 : 8. Compute of carbon. [CBSE 2016] [CBSE 2010] constituent of water, [CBSE 2010]
28. 29. II. S 30. 31. 32. 33. 34. 35. 36. 37. 38. 39.	The oxide of 'Al' ha What is the formu Short Answer Type Write down the for (a) sodium oxide (c) sodium suphid (a) Calculate the r (b) Calculate the r Calculate the form What is atomicity? Calculate relative Give the names of (a) Quicklime (c) Baking powder As per law of defin the mass of oxygen Find the formula u Select the element (d) non-metal, liqu Hydrogen and Oxy	as a chemical formula of ammonium ch Questions–I rmulae of: e elative molecular n relative molecular n rula unit mass of C P Explain with two molecular mass of F the elements prese ite proportions, cark that would be required that is (<i>a</i>) ductile, id at room temperatory ygen combine in th	ala Al_2O_3 (b) (d) mass of w mass of w aCl ₂ . examples H_2 and NI ent in the (b) (d) boon and co ired to react HCO ₃ (b) (b) conduce ature. e ratio 1	Aluminium magnesium ater (H ₂ O). NO ₃ . H ₃ [Atomic r following c Hydrogen b Potassium xygen comb act complete Na ₂ CO ₃ ctor of elect	valency chlorid n hydro nass of ompoun oromida sulpha ine in t ly with ricity, ($H = \frac{1}{2}$	[NCERT Exemplar] 1. [CBSE 2015] [CBSE 2014] (2 Marks) [NCERT] [NCERT] 1 $u, N = 14 u$] [DOE] [NCERT] atio of 3 : 8. Compute of carbon. [CBSE 2016] [CBSE 2010] constituent of water, [CBSE 2010] Vhat mass of oxygen

- **40.** Classify the following compounds as diatomic, triatomic and polyatomic molecule: HCl, H_2 , H_2O , NH_3 [CBSE 2014] **41.** Write the cations and anions present (if any) in the following compounds:
 - (a) CH_3COONa (b) NaCl (d) NH_4NO_3
 - (c) H₂

42. Which of the following symbols of elements are incorrect? Give their correct symbols. (c) Aluminium—AL (a) Cobalt—CO (b) Carbon—C

(d) Helium—He (e) Sodium—So

III. Short Answer Type Questions–II

43. Write down the names of compounds represented by the following formula:

- (a) $Al_2(SO_4)_3$ (b) CaCl₂ (c) K_2SO_4 (d) KNO_3 (e) $CaCO_3$. [NCERT]
- 44. Calculate the formula unit masses of ZnO, Na₂O, K₂CO₃. [Atomic mass of Zn = 65 u, O = 16 u Na = 23 u, K = 39 u, C = 12 u[NCERT]
- **45.** What is the difference between homoatomic and heteroatomic molecules? Illustrate with the help of four examples each? [NCERT]
- **46.** A 0.24 g sample of compound of oxygen and boron was found by analysis to contain 0.096 g of boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight. [NCERT] [HOTS]
- **47.** When 3.0 g of carbon is burnt in 8.0 g oxygen, 11.0 g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.0 g of carbon is burnt in 50.0 g of oxygen? Which law [NCERT] [CBSE 2012] [HOTS] of chemical combination will govern your answer?
- **48.** What are polyatomic ions? Give examples.
- **49.** Write the chemical formulae of the following.
 - (b) Calcium oxide (a) Magnesium chloride (c) Copper nitrate
 - (d) Aluminium chloride

(e) Calcium carbonate

[NCERT]

[NCERT]

50. The percentage of three elements, calcium, carbon and oxygen in a sample is given as Ca = 40% C = 12% O = 48%

If law of constant proportion is true, what weights of these elements will be present in 1.5 g of another sample of calcium carbonate? [Atomic mass of Ca = 40 u, C = 12 u, O = 16 u] [CBSE 2012]

- 51. How will you prove law of conservation of mass experimentally?
- 52. (a) When 5 g of calcium is burnt in 25 g of oxygen then 7 g of calcium oxide is produced. What mass of calcium oxide will be produced when 5 g of calcium is burnt in 20 g of oxygen? Which law of chemical combination will govern your answer? State the law.
 - (b) Write the chemical formula of calcium oxide.
- 53. Write the molecular formulae for the following compounds:
 - (a) Copper(II) bromide
 - (c) Calcium(II) phosphate
 - (e) Mercury(II) chloride

- (b) Aluminium(III) nitrate
- (d) Iron(III) sulphide
- (f) Magnesium(II) acetate
 - [NCERT Exemplar]
- **54.** Give the formulae of the compounds formed from the following sets of elements:
 - (a) Calcium and fluorine
 - (c) Nitrogen and hydrogen (e) Sodium and oxygen

- (b) Hydrogen and sulphur
- (d) Carbon and chlorine
- [NCERT Exemplar] (*f*) Carbon and oxygen

(3 Marks)

[NCERT Exemplar]

[NCERT Exemplar]

IV. Long Answer Type Questions

55. Calculate the molecular masses of H₂, O₂, Cl₂, CO₂, CH₄, C₂H₆, C₂H₄, NH₃, CH₃OH. [Atomic Mass of H = 1 u, O = 16 u, Cl = 35.5 u, C = 12 u, N = 14 u] [NCERT]

- **56.** Write the molecular formulae of all the compounds that can be formed by the combination of following ions:
 - $\mathrm{Cu}^{2+},\,\mathrm{Na}^{+},\,\mathrm{Fe}^{3+},\,\mathrm{Cl}^{-},\,\mathrm{SO}_{4}^{\,2-}$, $\mathrm{PO}_{4}^{\,3-}$
- **57.** Define the following terms:
 - (b) Molecule (c) Avogadro's number (d) Valency (a) Atom (e) Molar mass

Answers 3.1

- **1.** It is a symbolic representation of a compound with the help of symbols of the elements and formula of radicals (polyatomic ions) and valencies.
- **2.** (*i*) 3 *(ii)* 5
- 3. Nanometre (nm)
- 4. It is equal to the sum of masses of all the atoms present in a molecule.
- 5. It is the sum of masses of all the ions and polyatomic ions present in the formula unit of an ionic compound.
- 6. Carbon-12
- 7. It exist as O_2 .
- 8. They exist as monoatomic molecules, e.g. He, Ne, Ar.
- 9. 2H represent 2 atoms of Hydrogen whereas H₂ represents a molecule of hydrogen gas.
- **10.** Formula unit mass of $Mg(NO_3)_2$

$$= 1Mg + 2N + 6O$$

= $24 + 2 \times 14 + 6 \times 16$

$$= 24 + 2 \times 14 + 6 \times 16$$

= $24 + 28 + 96 = 148 u$

- 11. It is defined as unit of mass equal to 1/12th of the mass of 1 atom of C-12 isotope.
- **12.** It is because atom is very small (10^{-9} m) , it cannot be seen by naked eye.
- **13.** It is defined as the number of atoms present in a molecule.
- **14.** O_3 has $3O^-$ atoms.
- **15.** (a) O_3 (b) S_8
- **16.** It states that chemical compounds have elements which are combined in a fixed ratio by mass.
- **17.** CO₂

12:32

- 3:8 by mass
- **18.** Mg^{2+} is the cation, O^{2-} is the anion.
- **19.** X 0 $_3 \land _2$ X_2O_3
- **20.** (*a*) Silver(I) Oxide
- **21.** (*a*) Fe

(b) Copper(II) Sulphide

- (b) K **22.** Cation is a positively charged ion in which number of protons are greater than electrons. Anion is a negatively charged ion in which number of electrons are greater than protons.
- **23.** (a) Aluminium sulphate (b) Ammonium hydroxide
- 24. (a) Atoms are not able to exist independently is not true because some of the atoms can exist independently e.g. He, Ne.

(5 Marks)

[NCERT Exemplar]

Polyatomic: NH₃

- 41. (a) CH_3COO^- is the anion and Na⁺ is the cation
 - (b) Na^+ is the cation and Cl^- is the anion
 - (c) It does not form ions.
 - (d) NH_4^+ is the cation and NO_3^- is the anion (b) Carbon-C
- **42.** (*a*) Cobalt—Co
 - (c) Aluminium—Al
 - (e) Sodium—Na
- 43. (i) Aluminium Sulphate (ii) Calcium Chloride (iii) Potassium Sulphate (iv) Potassium Nitrate (v) Calcium Carbonate.
- **44.** Formula unit mass of

ZnO = 1Zn + 1O $= 1 \times 65 + 1 \times 16$ = 65 + 16 = 81 uFormula unit mass of

$$Na_2O = 2 Na + 1 O$$

$$= 2 \times 23 + 1 \times 16$$

$$= 46 + 16 = 62 u$$

Formula unit mass of

45. Molecules of an element having atoms of the same element, e.g. H_2 , O_3 , P_4 , S_8 are called heteroatomic molecules.

Molecules of a compound having atoms of different elements combined in a fixed (definite) proportion by mss, e.g. H₂O, NH₃, CH₄, SO₂ are called heteroatomic molecules.

(d) Helium—He

46. % of Oxygen =
$$\frac{\text{Mass of Oxygen}}{\text{Mass of Compound}} \times 100 = \frac{0.144}{0.24} \times 100 = \frac{144}{240} \times 100 = 60\%$$

% of Boron = $\frac{\text{Mass of Boron}}{\text{Mass of Compound}} \times 100 = \frac{0.096}{0.24} \times 100 = \frac{96}{240} \times 100 = 40\%$

47. $C_{12g} + O_2 \rightarrow CO_2_{32g} \to CO_2_{12+2\times 16} = 44g$

12 g of carbon reacts with 32 g of oxygen to form 44 g of CO₂ 3 g of carbon will react with 8 g of oxygen to form 11g of CO_2 . Out of 50 g, 42 g of oxygen will remain unreacted. The answer is governed by the Law of constant proportions.

48. Those ions which are made up two or more type of atoms are called polyatomic ions, e.g. NH_4^+, PO_4^{3-}

[:.50 g - 8 g = 42 g]

50. The other compound will also contains the same percentage of elements in its consitution, i.e.

$$Ca = 40\% C = 12\% = O = 48\%$$

$$\therefore \% \text{ of } Ca = \frac{Mass \text{ of Calcium}}{Mass \text{ of compound}} \times 100$$

$$40 = \frac{\text{Mass of calcium}}{1.5} \times 100$$

Mass of Ca = $\frac{40 \times 1.5}{100} = 0.6 \text{ g}$
% of C = $\frac{\text{Mass of C}}{\text{Mass of compound}} \times 100$
 $12 = \frac{\text{Mass of C}}{1.5} \times 100$
Mass of C = $\frac{1.5 \times 12}{100} = 1.8 \text{ g}$, and
% of O = $\frac{\text{Mass of oxygen}}{\text{Mass of compound}} \times 100$
 $48 = \frac{\text{Mass of oxygen}}{1.5} \times 100$
 \therefore Mass of oxygen = $\frac{48 \times 1.5}{100} = \frac{72}{100} = 0.72 \text{ g}$

- 51. Take dilute solution of sodium sulphate in a conical flask
 - Measure initial mass of solution.
 - Take dilute solution of Barium chloride in an ignition tube and set up the apparatus as shown in the figure.

- Calculate the mass of reactants.
- Tilt the ignition tube so that reactants can mix to form the product.
- Measure the final mass of the products.
- Observe the final mass of products.

Observation: Mass of reactants = Mass of products.

Conclusion: Law of conservation of mass is verified experimentally.

52. $2Ca + O_2 \rightarrow 2CaO$

 2×40 g of calcium reacts with 32 g of oxygen to form 2×56 g of CaO

5 g of calcium reacts with $\frac{32}{80} \times 5$ g of oxygen to form $\frac{2 \times 56}{2 \times 40} \times 5$ g of CaO.

5 g of calcium will react with 2 g of oxygen to form 7 g of calcium oxide.

:. 25 - 2 = 23 g O₂ will remain unreacted

In the second case 20 - 2 = 18 g of oxygen will remain unreacted. 7 g of CaO will be formed. Law of constant proportions governs the answer $\overset{(b)}{\xrightarrow{}}_{+2}\overset{\mathrm{Ca}}{\searrow}_{-2}^{0}$

CaO is the formula of calcium oxide.

53.	(a) $CuBr_2$	(b) $Al(NO_3)_3$
	(c) $Ca_3(PO_4)_2$	(d) $\operatorname{Fe}_2 S_3$
	(e) $HgCl_2$	(f) $Mg(COOCH_3)_2$
54.	(a) CaF_2	(b) H_2S
	(c) NH ₃	(d) CCl_4
	(e) Na_2O	$(f) \operatorname{CO}_2$
55.	Molecular mass of $H_2 = 2 \times 1 = 2 u$	
	Molecular mass of $O_2 = 2 \times 16 = 32 u$	
	Molecular mass of Cl_2 = 2 × 35.5 = 71 u	
	Molecular mass of CO_2 = Atomic mass of	$f C + 2 \times Atomic mass of O$
	$= 12 + 2 \times 16 = 12 + 32 = 44 \ u$	
	Molecular mass of CH_4 = Atomic mass of	of C + 4 \times Atomic mass of H
	$= 1 \times 12 + 4 \times 1 = 12 + 4 = 16 u$	
	Molecular mass of $C_2H_6 = 2 \times Atomic m$	ass of $C + 6 \times Atomic mass of H$
	$= 2 \times 12 + 6 \times 1 = 24 + 6 = 30 u$	
	Molecular mass of $C_2H_4 = 2 \times Atomic m$	ass of C + 4 × Atomic mass of H
	$= 2 \times 12 + 4 \times 1 = 24 + 4 = 28 u$	
	Molecular mass NH_3 = Atomic mass of I	$N + 3 \times Atomic mass of H$
	$= 14 + 3 \times 1 = 14 + 3 = 17 \text{ u}$	
	Molecular mass of CH_3OH	
	= Atomic mass of $C + 4 \times$ Atomic mass of	of H + Atomic mass of $O = 12 \times 1 + 4 \times 1 + 16$
	= 12 + 4 + 16 = 32 u	

56. (*a*) $CuCl_2$, $CuSO_4$, $Cu_3(PO_4)_3$

(b) NaCl, Na₂SO₄, Na₃PO₄

- (c) FeCl_3 , $\operatorname{Fe}_2(\operatorname{SO}_4)_3$, FePO_4
- **57.** (*a*) **Atoms:** It is the smallest particle which may or may not exist freely. It is the smallest unit of an element which take part in a chemical reaction.
 - (b) Molecules: Atoms of same or different elements join together to form a molecule.
 - (c) Avagadro's number: It is equal to 6.022×10^{23} per mol.
 - (d) Valency: Valency is defined as the combining capacity of an atom of element.
 - (e) Molar mass: Molar mass is defined as the mass of 1 mole of the substance (in grams).

2. DALTON ATOMIC THEORY, LAWS OF CHEMICAL COMBINATION

Dalton's Atomic Theory:

- Matter is made up of small and indestructible particles called atoms.
- Atoms are indivisible particles, which cannot be created or destroyed.
- Atoms of a given element are identical in mass and chemical properties.
- Atoms of different elements have different atomic mass and different properties.
- Atoms combine in the ratio of small whole numbers to form compounds.
- The relative number and kind of atoms are always constant in a given compound.

Law of Conservation of Mass: It states "Matter can neither be created nor be destroyed by a chemical reaction". Mass of products must be equal to the mass of reactants in a chemical reaction.

Law of Constant Proportions: It states that "In a chemical compound the elements are always present in definite proportion by mass."

Exercise 3.2

I. Very Short Answer Type Questions

- 1. Which postulate of Dalton's atomic theory is the result of the law of conservation of mass? [NCERT]
- 2. Which postulate of Dalton's atomic theory can explain the law of definite proportions?
- **3.** What is the full form of IUPAC?
- 4. Name the scientist who gave the atomic theory of matter.
- 5. What are building blocks of matter?
- 6. Name two laws of chemical combination.
- 7. State the law of conservation of mass.
- 8. State the law of constant proportions.

II. Short Answer Type Questions

9. In a reaction, 5.3 g of sodium carbonate reacted with 6 g of ethanoic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium ethanoate. Show that these observations are in agreement with the law of conservation of mass.

Sodium carbonate + ethanoic acid \rightarrow sodium ethanoate + carbon dioxide + water. [NCERT]

- Hydrogen and oxygen combine in the ratio of 1: 8 by mass to form water. What mass of oxygen gas would be required to react completely with 3 g of hydrogen gas? [NCERT]
- **11.** Write the main postulates of Dalton's atomic theory.

Answers 3.2

- **1.** 'Atoms are indivisible particles, which can neither be created nor destroyed in a chemical reaction.'
- 2. Atoms of elements combine in the ratio of small whole numbers to form compounds.
- 3. International Union of Pure and Applied Chemistry.
- 4. Dalton 5. Atoms
- 6. (i) Law of conservation of mass (ii) Law of constant proportions
- 7. It states that 'Matter can neither be created nor destroyed'.
- 8. It states that 'In a chemical compound, elements are always present in definite proportion by mass.'
- 9. Mass of reactants:
 - = Mass of Na_2CO_3 + Mass of CH_3COOH

= 5.3 + 6.0 = 11.3 g

Mass of products:

- = Mass of CO₂ + Mass of H₂O + Mass of CH₃COONa
- = 2.2 + 0.9 + 8.2 = 11.3 g
- \therefore Mass of reactants = Mass of products.
- **10.** 1 g of H_2 reacts with 8 g of oxygen.
 - 3 g of H_2 will react with $8 \times 3 = 24$ g of oxygen.
 - \therefore Law of conservation of mass is followed.

(1 Mark)

[NCERT] [DOE]

(2 Marks)

[DOE]

[DOE]

[DOE]

- **11.** The main postulates are:
 - All matter is made up of small particles called atoms.
 - Atoms are indivisible particles, which cannot be created or destroyed.
 - Atoms of a given element are identical in mass and chemical properties.
 - Atoms of different elements have different atomic masses and different properties.
 - Atoms combine in the ratio of small whole numbers to form compounds.
 - The relative number and the kind of atoms are constant in a given compound.

3.3 MOLE CONCEPT

Mole: It is defined as a counting unit for the amount of substance which is equal to 6.022×10^{23} particles. It is also equal to the molar mass of an element or the compound. It has a unit symbol: mol.

Molar mass: The atomic mass and molecular mass which is expressed in grams per mol unit is called molar mass.

Avagadro's Number (Avagadro's Constant): It is equal to 6.022×10^{23} per mol.

- 1 *u* is a mass of 1 atom of Hydrogen
- 1 g is the molar mass of hydrogen atom where it has 6.022×10^{23} atoms.
- 1 mole = Atomic mass in grams
- 1 mole = Molecular mass in grams
- Number of moles = $\frac{\text{Given mass}}{1}$
 - Molar mass

 6.022×10^{23}

Exercise 3.3

I. Very Short Answer Type Questions

- 1. How many atoms are there in 1 gram of hydrogen?
- 2. What is meant by Avagadro's constant?

II. Short Answer Type Questions–I

- 3. If one mole of carbon atoms weighs 12 gram, what is the mass (in gram) of 1 atom of carbon? [Atomic mass of C = 12 u] [HOTS]
- **4.** What is the mass of:
 - (a) 0.2 mole of oxygen atoms?
 - (b) 0.5 mole of water molecules? [Atomic mass of O = 16 u, H = 1 u]
- 5. Calculate the number of molecules of sulphur (S_8) present in 16 g of solid sulphur. [Atomic mass of S = 32 u]
- 6. (a) Calculate the number of moles in 34 g of NH_3 [N = 14 u, H = 1 u]
- (b) Calculate number of molecule in 8 g dioxygen gas [O = 16 u][CBSE 2011] [CBSE 2010]
- 7. Calculate mass of 1 molecule of oxygen gas.
- 8. The mass of single atom of an element is 2.65×10^{-23} g. Calculate its atomic mass.

[CBSE 2010][HOTS]

- 9. Which of the following correctly represents 360 g of water?
 - (i) 2 moles of H_2O

(c) (ii) and (iii)

- (ii) 20 moles of water (*iv*) 1.2044×10^{25} molecules of water
- (*iii*) 6.022×10^{23} molecules of water (a) (i)
- (*b*) (*i*) and (*iv*)
- (d) (ii) and (iv)

[HOTS]

[CBSE 2012]

(1 Mark)

(2 Marks)

10.	Which of the following would weigh the hi	ighest	?	
	(a) 0.2 mole of sucrose $(C_{12} H_{22} O_{11})$	(b) 2	2 moles of CO_2	
	(c) 2 moles of $CaCO_3$	(<i>d</i>) 1	$10 \text{ moles of } H_2O$	[HOTS]
11.	Which of the following has maximum nun	nber o	f atoms?	
	(a) 18g of H_2O	(b) 1	$18g of O_2$	
	(c) 18g of CO_2	(<i>d</i>) 1	$18g \text{ of } CH_4$	
12.	Which of the following contains maximum	n num	ber of molecules?	
	(a) 1g of CO_2	(b) 1	$\lg \text{ of } \mathbb{N}_2$	
	(c) $1g \text{ of } H_2$	(<i>d</i>) 1	$\lg ext{ of } ext{CH}_4$	
Ш. S	Short Answer Type Questions–II			(3 Marks)
13.	Calculate the number of moles for the follo	owing		· · · · ·
	(<i>i</i>) 52 g of He (finding mole from mass)			
	(<i>ii</i>) 12.044×10^{23} number of He atoms (fin	ding r	nole from number of particles	s).
	[Atomic mass of He = $4 u$]			[NCERT]
14.	Calculate the mass of the following:			L]
	(i) 0.5 mole of N_2 gas (mass from mole of 1	molec	ule)	
	(<i>ii</i>) 0.5 mole of N atoms (mass from mole of	of aton	n)	
((iii) 3.011 × 10 ²³ number of N atoms (mass	from	number)	
Ì	(iv) 6.022 × 10 ²³ number of N ₂ molecules (i	mass f	from number)	
	[Atomic mass of N = $14 u$]			
15.	Calculate the number of particles in each	of the	following:	
	(i) 46 g of Na atoms (number of atoms fro	om ma	.ss)	
	(<i>ii</i>) 8 g of O_2 molecules (number of molecul	les fro	om mass)	
(iii) 0.1 mole of carbon atoms (number from	n give	n moles)	
	[Atomic mass of Na = $23 u$, $0 = 16 u$, C	= 12	u]	
16 .	Which has more number of atoms, 100 gra	ms of	sodium or 100 grams of iron (g	given, atomic
	mass of Na = $23 u$, Fe = $56 u$?			-
17.	What is the mass of:			
	(a) 1 mole of nitrogen atoms			
	(b) 4 mole of aluminium atoms (Atomic m	ass of	aluminium = 27)	
	(c) 10 moles of sodium sulphite (Na_2SO_3)			
	[Atomic mass of $N = 14 u$, $Al = 27 u$, N	[a = 23	B u, S = 32 u, O = 16 u]	
18.	Convert into moles.			
	(a) 12 g of oxygen gas	<i>(b)</i> 2	20 g of water	
	(c) 22 g of carbon dioxide. [Atomic Mass o	f O =	16 u , H = 1 u , C = 12 u]	
19.	Calculate number of molecules of phosph	orus ((P_4) present in 248 g of solid	phosphorus.
	[Given atomic mass: $P = 31 u$, $N_A = 6.022$	$\times 10^{23}$	³ per mole] [4	CBSE 2012]
20.	The atomic mass of calcium is 40 <i>u</i> . What wo f calcium?	will be	the total number of calcium a	toms in 0.4 <i>u</i> CBSE 2016]
21.	$3.42~\text{g}$ of sucrose (C_{12}~H_{22}~O_{11}) is dissolved	d in 18	$ m 8~g~of~H_2O$ in a beaker. Calcul	late the total
	number of oxygen atoms in the solution.			[HOTS]
22.	Compute the difference in masses of 10^3 electron = 9.1×10^{-31} kg)	mole	each of Mg atoms and Mg ²⁺ i	ons (Mass of [HOTS]
23.	A sample of (C_2H_6) has the same mass as	s 1.5 >	\times 10 ²⁰ molecules of CH ₄ . How	v many C_2H_6
	molecule does the sample of gas contain?			[HOTS]

IV. Long Answer Type Questions

- 24. Calculate the molar mass of the following substances:
 - (a) Ethyne, C_2H_2 (b) Sulphur molecule, S_8
 - (c) Phosphorus molecule, P_4 (Atomic mass of phosphorus = 31)
 - (d) Hydrochloric acid, HCl
 - (e) Nitric acid, HNO₃

[Atomic mass of C = 12 u, H = 1 u, S = 32 u, Cl = 35.5 u, N = 14 u, O = 16 u, P = 31 u]

25. Calculate the number of aluminium ions present in 0.051 g of aluminium oxide. (*Hint:* The mass of an ion is the same as that of an atom of the same element. Atomic mass of Al = 27 u) [Atomic mass of Al = 27u, O = 16u] [HOTS]

- **26.** (a) Calculate the number of oxygen atoms in 0.1 mole of $Na_2 CO_3.10 H_2O$
 - (b) If one mole of sulphur weighs 32 grams, what is the mass in grams of 1 atom of sulphur? [HOTS][CBSE 2015]
 - (c) Identity the correct formula of ammonium sulphate?
 (NH₄) (SO₄)₃, (NH₄)₂ SO₄, NH₄ (SO₄)₂.

Answers 3.3

- **1.** 1 g Hydrogen has 6.022×10^{23} atoms
- 2. It is a constant representing the no. of particles present in one mole of a substance and it is equal to 6.022×10^{23} atoms/molecules/ions

3. Mass of 1 atom =
$$\frac{\text{Molar mass}}{6.022 \times 10^{23}} = \frac{12 \text{ g}}{6.022 \times 10^{23}} = 1.99 \times 10^{-23} \text{ g}$$

4. (*a*) Mass of Oxygen atoms

= No. of moles of oxygen
$$\times$$
 Molar mass = 0.2×16 g = 3.2 g

(b) Mass of H_2O molecule = No. of moles of $H_2O \times Molar$ mass

$$= 0.5 \times (2 + 16) = 0.5 \times 18 = 9 \text{ g}$$

- 5. Number of molecules = $\frac{\text{Given mass}}{\text{Molar mass}} \times 6.022 \times 10^{23} = \frac{16}{8 \times 32} \times 6.022 \times 10^{23}$
- 6. (a) Number of moles = $\frac{\text{Given mass}}{\text{Molar mass}} = \frac{34}{1N+3H} = \frac{34}{14+3\times 1} = \frac{34}{17} = 2 \text{ moles}$

(b) Number of molecule = $\frac{\text{Given mass}}{\text{Molar mass}} \times 6.022 \times 10^{23}$

$$= \frac{8}{32} \times 6.022 \times 10^{23} = 1.5055 \times 10^{23} \text{ molecules}$$

7. Mass of 1 molecule = $\frac{\text{Molar mass}}{6.022 \times 10^{23}} = \frac{32}{6.022 \times 10^{23}} = 5.32 \times 10^{-23} \text{g}$

8. Mass of 1 atom = $\frac{\text{Atomic mass}}{6.022 \times 10^{23}}$

9.65 V	10-23	~ -	Atomic mass	
2.69 ×	10	g –	6.022×10^{23}	

Atomic mass = $2.65 \times 10^{-23} \times 6.022 \times 10^{23} = 15.96 \text{ g mol}^{-1}$

9. (*d*) (*ii*) and (*iv*) Number of moles = $\frac{\text{Given mass}}{\text{Molar mass}} = \frac{360}{18} = 20 \text{ moles}$ 6.022×10^{23} molecules of H₂O weigh = 18 g 1 molecule of H₂O weigh = $\frac{18}{6.022 \times 10^{23}}$ 1.2044×10^{25} molecules of H₂O weigh = $\frac{18}{6.022 \times 10^{23}} \times 1.2044 \times 10^{25} = 360$ g **10.** (a) 0.2 mole of $C_{12}H_{12}O_{11}$ $= 0.2 \times (12 \times 12 + 22 \times 1 + 16 \times 11)$ $= 0.2 \times (144 + 22 + 176) = 0.2 \times 342 = 171 \text{ g}$ (b) 2 moles of $CO_2 = 2 \times 44 = 88 \text{ g}$ (c) 2 moles of $CaCO_3 = 2 \times 100 = 200 \text{ g}$ (d) 10 moles of $H_2O = 10 \times 18 = 180 \text{ g}$ So, (c) 2 moles of $CaCO_3$ has highest weight. 11. (a) 18 g of H₂O = $\frac{18}{18} \times 3 \times 6.023 \times 10^{23} = 18.069 \times 10^{23}$ atoms (b) 18 g of $O_2 = \frac{18}{32} \times 6.022 \times 10^{23} \times 2 = 6.77 \times 10^{23}$ atoms (c) 18 g of CO₂ = $\frac{18}{44} \times 6.022 \times 10^{23} \times 3 = 7.34 \times 10^{23}$ atoms (d) 18 g of CH₄ = $\frac{18}{16} \times 5 \times 6.022 \times 10^{23} = 3.387 \times 10^{24}$ atoms So, (d) $18 \text{ g of } \text{CH}_4$ will have maximum number of atoms. 12. (a) Number of molecules of $CO_2 = \frac{1}{44} \times 6.022 \times 10^{23}$ $=\frac{60.22}{44} \times 10^{22} = 1.369 \times 10^{22}$ molecule (b) Number of molecules of $N_2 = \frac{1}{28} \times 6.022 \times 10^{23}$ $=\frac{60.22}{22} \times 10^{22} = 2.15 \times 10^{22}$ molecule (c) Number of molecules of $H_2 = \frac{1}{2} \times 6.022 \times 10^{23}$ $= 3.011 \times 10^{23}$ molecule (d) Number of molecules of $CH_4 = \frac{1}{16} \times 6.022 \times 10^{23}$

$$=\frac{60.22}{16}\times10^{22}=3.77\times10^{22}\,\mathrm{molecules}$$

Ans. (c) 1 g of H_2 has maximum number of molecules.

13. (i) Number of moles =
$$\frac{\text{Given mass}}{\text{Molar mass}} = \frac{52}{4} = 13 \text{ moles}$$

(ii) Number of moles = $\frac{\text{Given number of atoms}}{6.022 \times 10^{23}} = \frac{12.044 \times 10^{23}}{6.022 \times 10^{23}} = 2 \text{ moles}$
14. (i) Mass = Number of moles × Molar mass = 0.5 × (2 × 14) = 14 g
(ii) Mass = Number of mole × Molar mass = 0.5 × 14 = 7 g
(iii) Mass = $\frac{\text{Number of particle}}{6.022 \times 10^{23}} \times \text{Molar mass} = \frac{3.011 \times 10^{23}}{6.022 \times 10^{23}} \times 14 = 7 \text{ g}$
(ii) Mass = $\frac{\text{Number of particle}}{6.022 \times 10^{23}} \times \text{Molar mass} = \frac{6.022 \times 10^{23}}{6.022 \times 10^{23}} \times 28 = 28 \text{ g}$
(i) Mass = $\frac{\text{Number of particle}}{6.022 \times 10^{23}} \times \text{Molar mass} = \frac{6.022 \times 10^{23}}{6.022 \times 10^{23}} \times 28 = 28 \text{ g}$
15. (i) Number of atoms = $\frac{\text{Given mass}}{\text{Molar mass}} \times 6.022 \times 10^{23}$
 $= \frac{46}{23} \times 6.022 \times 10^{23} = 12.044 \times 10^{23} \text{ atoms}$
(ii) Number of molecules = $\frac{\text{Given mass}}{\text{Molar mass}} \times 6.022 \times 10^{23}$
 $= \frac{8}{32} \times 6.022 \times 10^{23} = 1.505 \times 10^{23} \text{ molecule}$
(iii) Number of molecules = $\frac{\text{Given mass}}{\text{Molar mass}} \times 6.022 \times 10^{23}$
 $= 0.1 \times 6.022 \times 10^{23} = 6.022 \times 10^{23}$
 $= 0.1 \times 6.022 \times 10^{23} = 6.022 \times 10^{23}$
 $= 10.0 \times 6.022 \times 10^{23} = \frac{60.22}{23} \times 10^{24}$
 $= 2.61 \times 10^{24} \text{ atoms}$
Number of Na atoms = $\frac{\text{Given mass}}{\text{Molar mass}} \times 6.022 \times 10^{23}$
 $= \frac{60.22}{56} \times 10^{24} = 1.07 \times 10^{24} \text{ atoms}$
Number of Fe atoms = $\frac{\text{Given mass}}{\text{Molar mass}} \times 6.022 \times 10^{23} = \frac{100}{56} \times 6.022 \times 10^{23}$
 $= \frac{60.22}{56} \times 10^{24} = 1.07 \times 10^{24} \text{ atoms}$
 $\therefore 100 \text{ g of Na has more number of moles \times Molar mass
 $= 4 \times 27 = 108 \text{ g}$
(c) Mass = Number of moles \times Molar mass $= 14 \text{ g}$
(b) Mass = Number of moles \times Molar mass $= 4 \times 27 = 108 \text{ g}$
(c) Mass = Number of moles \times Molar mass $= 14 \times 27 = 108 \text{ g}$
(c) Mass = Number of moles \times Molar mass $= 14 \times 27 = 108 \text{ g}$
(c) Mass = Number of moles \times Molar mass $= 14 \times 10 \times (28 + 18 + 30)$
 $= 10 \times (28 +$$

25. $Al_2O_3 \rightarrow 2Al^{3+} + 3O^{2-}$

Number of molecules of $Al_2O_3 = \frac{\text{Given mass}}{\text{Molar mass}} \times 6.022 \times 10^{23}$

$$= \frac{0.051}{\text{Molar mass of Al}_2\text{O}_3} \times 6.022 \times 10^{23}$$
$$= \frac{0.051}{2\text{Al} + 30} \times 6.022 \times 10^{23} = \frac{0.051}{2 \times 27 + 3 \times 16} \times 6.022 \times 10^{23}$$
$$= \frac{0.051}{102} \times 6.022 \times 10^{23} = \frac{51}{102} \times 6.022 \times 10^{20} = 3.011 \times 10^{20}$$

Number of Al^{3+} ions = 2 × no. of molecules of $Al_2O_3 = 2 \times 3.011 \times 10^{20} = 6.022 \times 10^{20} Al^{3+}$ ions.

26. (*a*) 1 mole of $Na_2 CO_3 \cdot 10 H_2O$ contains

= $13 \times 6.022 \times 10^{23}$ atoms of oxygen

- \therefore 0.1 mole of Na₂ CO₃ · 10H₂O contains
 - = $13 \times 6.022 \times 10^{23} \times 0.1 = 7.8286 \times 10^{23}$ atoms

(b) Mass of 1 atom of Sulphur = $\frac{\text{Molar mass}}{6.022 \times 10^{23}} = \frac{32}{6.022 \times 10^{23}} = 5.33 \times 10^{-23} \text{ g}$

(c) $(NH_4)_2 SO_4$ is the formula for Ammonium sulphate.

VALUE BASED QUESTIONS

- 1. Mrs. Anuradha's house maid fainted while moping the floor. Mrs. Anuradha took her to doctor. Doctor told her that she is suffering from anaemia. She should take green leafy vegetables along with the medicines. Anuradha also helped her maid financially.
 - (i) What values are associated with Mrs. Anuradha?
 - (ii) Which metal deficiency leads to anaemia?
 - (*iii*) What is the role of iron in our body?
- 2. Ram's grandfather has difficulty in walking, Ram took him to a doctor. Doctor told him, he has deficiency of calcium which is needed for strong bones. He advised him to take milk and milk products everyday and take sufficient sunlight.
 - (i) What values are associated with Ram?
 - (ii) Why should he take milk everyday?
 - (iii) Why should we sit in sunlight everyday?
- 3. In which type of reactions the law of conservation of mass is not applicable? [HOTS]

Answers

- **1.** (*i*) She is a kind-hearted and a helpful person.
 - (ii) Iron
 - (iii) Iron is present in Haemoglobin which acts as a oxygen career.
- 2. (i) He is a kind-hearted and is concerned about the health of his grandfather.
 - (ii) Milk is a rich source of calcium.
 - (*iii*) Sunlight helps in the formation of vitamin D in our body which is essential for strong bones and absorption of calcium.
- Nuclear reactions.

PRACTICAL BASED QUESTIONS

EXPERIMENT 5: To determine the physical and chemical changes in a reaction. Carry out the following reactions and classify them as physical or chemical changes

- (i) Iron with copper sulphate solution in water,
- (ii) Burning of magnesium ribbon in air,
- (iii) Zn with dil. H_2SO_4 ,
- (iv) Heating of copper sulphate crystals, and
- (v) Sodium sulphate with barium chloride in the form of their solution in water.
- **Q1.** What happens when Zn metal reacts with dilute H₂SO₄? How will you test the gas formed? (EXPERIMENTAL SKILLS)
- Ans. Hydrogen gas will be evolved and ZnSO₄ solution will be formed.
 Test: If we bring a burning matchstick near the gas, it will burn with a 'pop' sound.
- **Q2.** Four students used different ways of burning magnesium ribbon during an experiment as shown below. The correct way has been followed by which student:

(EXPERIMENTAL SKILLS)

Ans. III student is using the correct way. Tong should be used so that hand does not get burnt by touching the hot magnesium ribbon.

It should be heated at the top of the flame which is the hottest part of the flame.

Q3. What is 'X' in the figure given below? Why should we rub magnesium ribbon with a sand paper before burning? (REASONING SKILLS)

- **Ans.** 'X' is magnesium oxide. Magnesium ribbon is rubbed with sand paper so as to remove magnesium oxide layer which may prevent its combustion.
 - **Q4.** What do we observe when water is added to an anhydrous copper sulphate and why?
- (REASONING SKILLS) [CBSE 2012] Ans. Dirty white colour changes to blue colour due to the formation of hydrated copper sulphate.

 $\begin{array}{rcl} \mathrm{CuSO}_4(s) + 5\mathrm{H}_2\mathrm{O}(l) & \rightarrow & \mathrm{CuSO}_4.5\mathrm{H}_2\mathrm{O} \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

- Q5. What do you observe on burning the magnesium ribbon? What will be the effect on red litmus solution added to the product obtained? (OBSERVATION SKILLS) [CBSE 2014]
- Ans. White ash (MgO) will be formed. Mg burns with white dazzling light. The solution of MgO in water will turn red litmus blue.
 - **Q6.** What will be your observation, when crystals of copper sulphate are heated?

(OBSERVATION SKILLS) [CBSE 2012]

- Ans. (i) Blue colour of the crystals changes into dirty white.
 - (ii) Crackling sound is produced.

(iii) Water droplets are seen along the sides of the tube.

- **Q7.** What will happen when sodium sulphate solution is added to a barium chloride solution? Write the chemical reaction involved. (OBSERVATION, CONCEPTUAL SKILLS) [CBSE 2016]
- Ans. White precipitate will be formed due to Barium sulphate

 $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$

- **Q8.** What will happen if an iron nail is put in the copper sulphate solution? Write the chemical reaction involved in this. (CONCEPTUAL SKILLS)
- Ans. The colour of the solution will change from blue to pale green, reddish brown copper metal will be get deposited on the iron nail.

$$\begin{array}{rcl} \operatorname{Fe}(s) + \operatorname{CuSO}_4(aq) & \to & \operatorname{FeSO}_4(aq) + \operatorname{Cu}(s) \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$$

Q9. When a solution of sodium sulphate is added to the solution of braium chloride, we immediately get a precipitate as shown in the test tube below. Name the precipitate formed. (CONCEPTUAL SKILLS) [CBSE 2011]

- **Ans.** B, white precipitate of $BaSO_4$ will be formed.
- Q10. An iron nail was dipped in a salt solution of 'A'. After sometime a brown substance is deposited on an iron nail. Identify the salt 'X' and the initial and final colour of the solution after the reaction. (THINKING SKILLS)
- **Ans.** 'X' is copper sulphate. Initially its colour is blue. The final colour of the solution will become pale green after the reaction.

EXPERIMENT 6: To verify the law of conservation of mass in a chemical reaction.

Q1. To verify the law of conservation of mass, Prema took a spring balance of least count 0.5 g to weigh the beaker. When she weighed it, the pointer stopped at 65th division. What is the mass of beaker? (EXPERIMENTAL SKILLS) [CBSE 2012]

Ans. Mass = Least count × Number of division = $0.5 \text{ g} \times 65 = 32.5 \text{ g}.$

- Q2. To verify the law of conservation of mass in a chemical reaction. What should be the form of Na_2SO_4 and $BaCl_2$ and why? (EXPERIMENTAL SKILLS)
- Ans. Both should be in the form of aqueous solution so that the reaction between ions can take place to form white precipitate of $BaSO_4$ and aqueous solution of NaCl.
 - Q3. Name the apparatus needed to experimentally verify the law of conservation of mass.

(EXPERIMENTAL SKILLS)

- Ans. Conical flask, Ignition tube, physical balance, thread, cork are needed.
- **Q4.** For which type of reactions the law of conservation of mass is not applicable and why?

(REASONING SKILLS)

Ans. It is not applicable for Nuclear reactions.

It is because in nuclear reaction loss of mass is converted into energy. The mass of reactants is not equal to mass of products.

- Q5. What should be equal in weight in an experiment to verify the law of conservation of mass? (CONCEPTUAL SKILLS) [CBSE 2012]
- Ans. Both reactants and products must be equal in weight to prove that law, i.e. Mass of reactants = Mass of products.
- **Q6.** After carrying out the experiment of conservation of mass with the help of the following reaction: $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$. Reena was asked to identify the chemical formula of the precipitate formed and write its name.

(CONCEPTUAL SKILLS) [CBSE 2012]

- **Ans.** White precipitate of $BaSO_4$ (Barium sulphate) is formed.
- **Q7.** A reaction between barium chloride and sodium sulphate was carried out in a sealed conical flask. The masses of the reactants and the products were measured carefully. After the experiment, it was concluded that: [CBSE 2012]
 - (a) mass of barium chloride = mass of sodium chloride
 - (b) mass of sodium chloride = mass of sodium sulphate
 - (c) mass of (barium chloride + sodium sulphate) = mass of (barium sodium + sodium chloride)
 - (d) mass of (barium chloride + sodium chloride) = mass of (barium sulphate + sodium sulphate)

Which is the correct statement?

(CONCEPTUAL SKILLS)

- Ans. (c) is the correct statement because Mass of reactants = Mass of products.
- Q8. In a chemical reaction, the sum of the masses of reactants and products remain unchanged. What is this law called? Who discovered this law? (CONCEPTUAL SKILLS) [CBSE 2012]
- Ans. It is called the law of conservation of mass. Lavosier discovered this law.
- Q9. In a chemical reaction, the mass of products is 56 g. One of the reactant has a mass equal to 26 g, what will be mass of the other reactant? (NUMERICAL SKILLS) [CBSE 2016]
- **Ans.** Mass of reactants = Mass of products

$$x + 26 = 56 \text{ g}$$

$$x = 56 - 26 = 30$$
 g

Q10. Four students A, B, C and D verified the law of conservation of mass in a chemical reaction of barium chloride and sodium sulphate. All of them took 107.2 g of barium chloride and 116.1 g of sodium sulphate solution and mixed them in a beaker of mass 150 g. They reported their results as follows: [CBSE 2012]

Student	Colurless mixture after mixing	Mass of reaction mixture in the beaker including mass of beaker
А	White precipitate	383.3 g
В	Brown precipitate	393.3 g
С	White precipitate	373.3 g
D	Brown precipitate	363.3 g

Which of the followng observation is correct?

(NUMERICAL SKILLS)

Ans. Mass of reactants + beaker = 103.2 + 116.1 + 150 = 373.3 g White precipitate will form. Mass of products = 373.3 g

'C' is correct.

IMPORTANT FORMULAE

1.
$$A + B \rightarrow AB$$

1. Mass of reactants = Mass of products
 $m_A + m_B = m_{AB}$
 $m_H = 2 - 1$

- **2.** In H_2O ,
- 2. In H₂O, $\frac{m_H}{m_o} = \frac{-}{16} = \frac{-}{8}$ 3. Molecular mass of H₂O = 2 × Mass of hydrogen atom + Mass of oxygen atom = 2 × 1 + 16 = 18 u
- 4. Formula unit mass of $CaCl_2 = Mass$ of $Ca + 2 \times Mass$ of chlorine atom = $40 + 2 \times 35.5 = 111$ u
- **5.** Molar mass of water = 18 g

6. 1 mole = 6.022×10^{23} atoms/ion/molecule

7. Number of moles
$$(n) = \frac{\text{Given mass}}{\text{Molar mass}} = \frac{m}{\text{M}}$$

8. Number of moles(n) = $\frac{\text{Given number of particle}}{\text{Avogadro's Number}} = \frac{N}{N_0}$

9.
$$\frac{m}{M} = \frac{N}{N_o}$$
 $m = \frac{N \times M}{N_o}$

10. Mass of 1 particle =
$$\frac{\text{Molar mass}}{N_o} = \frac{\text{Molar mass}}{6.022 \times 10^{23}}$$

11. Percentage of element =
$$\frac{\text{Total Mass of Element}}{\text{Molar Mass of Compound}} \times 100$$

12. Calculation of Empirical formula

S	S. No	Elements	%age	Atomic mass	No. of Moles % / Atomic mass	Divide by least	Simple ratio
	1						
	2						
	3						

13. (EF) Empirical Formula weight = Total Mass of elements in Empirical Formula (MF) Molecular weight = Total mass of elements in Molecular Formula

$$n = \frac{\text{Molecular weight}}{\text{Empirical Formula weight}} \times 100$$
 MF = $n \times \text{EF}$

IMPORTANT NUMERICAL PROBLEMS

- **1.** In a reaction 5.3 g of sodium carbonate reacts with 6 g of ethanoic acid. The product formed are CO_2 , 0.9 g of H_2O and 8.2 of sodium ethanoic. Calculate the mass of CO_2 formed. 2. Calculate the mass of H_2O formed by reaction of 3 g of H_2 with 29 g of oxygen. Calculate mass of unreacted oxygen. [HOTS] 3. Calculate the number of iron atoms in a piece of iron weighing 5.6 g. [Atomic mass of Fe = 56] 4. Mass of 1 molecule of a substance is 5.32×10^{-23} g. Calculate its molecular mass. 5. Calculate the mass of 1 atom of oxygen. [Atomic mass = 16 u] **6.** Calculate the mass of 0.5 mole of P_4 molecule. [Atomic mass of P = 31 u] 7. Calculate the number of Hydrogen molecule in 8 g of H_2 . 8. Calculate the molar mass of $CuSO_4.5H_2O$. [Cu = 63.5 u, S = 32 u, O = 16 u, H = 1 u, O = 16 u] 9. Calculate the mass of 1 molecule of oxygen. [O = 16 u] **10.** Calculate the number of atoms in (i) 52 mole of He (*ii*) 52 *u* of He (*iii*) 12 g of He [HOTS] **11.** What is the mass of 5 mole of chlorine gas. [Cl = 35.5 u][HOTS] **12.** Find the mass of (i) 0.2 mole of N atoms (ii) 1.4 mole of Al atoms. (*iii*) 0.5 mole of HCl molecule [N = 14u, Al = 27u, H = 1u, Cl = 35.5u][CBSE 2017] Solutions 1. Mass of Na_2CO_3 + Mass of ethanoic acid = Mass of CO_2 + mass of H_2O + Mass of CH₃COONa 5.3 + 6.0 = x + 0.9 + 8.2x = 11.3 - 9.1 = 2.2 g. 2. 2 g of hydrogen combines with 16 g of oxygen. 3 g of hydrogen combines with = $\frac{16}{2} \times 3 = 24$ g of oxygen. Mass of unreacted oxygen = 29 - 24 = 5Mass of water formed = Mass of hydrogen reacted + mass of oxygen reacted = 3 + 24 = 27 g**3.** Number of atoms (N) = $\frac{m}{M} \times N_o = \frac{5.6}{56} \times 6.022 \times 10^{23} = 6.022 \times 10^{22}$ atoms **4.** Molecular mass = Mass of 1 molecule × 6.022×10^{23} = 5.32×10^{-23} g × 6.022×10^{23} = 32 g mol⁻¹ = 32u5. Mass of 1 atom = $\frac{\text{Molar mass}}{6.022 \times 10^{23}} = \frac{16}{6.022 \times 10^{23}} = 2.66 \times 10^{-23} \text{ g}$ **6**. 1 mole of $P_4 = 4 \times 31 = 124$ g $0.5 \text{ mole of } P_4 = 124 \times 0.5 = 62 \text{ g}$ 7. Number of molecule $= \frac{\text{Given mass}}{\text{Molar mass}} \times 6.022 \times 10^{23} = \frac{8}{2} \times 6.022 \times 10^{23}$
 - = 24.088×10^{23} molecule = 2.4088×10^{24} molecule
 - 8. Molar mass of $CuSO_4.5H_2O$

= Atomic mass of Cu + Atomic mass of S + $4 \times$ Atomic mass of O + 5 (Molar mass of H₂O)

 $= 63.5 + 32.0 + 4 \times 16 + 5(2 + 16)$ = 63.5 + 32.0 + 64 + 5 × 18 = 249.5 g mol⁻¹ 9. Mass of 1 molecule = $\frac{\text{Molar mass}}{6.022 \times 10^{23}} = \frac{32}{6.022 \times 10^{23}} = 5.33 \times 10^{-23}$ g 10. (i) Number of He atoms = Number of mole × 6.022 × 10²³ = 52 × 6.022 × 10²³ = 313.144 × 10²³ = 3.13 × 10²⁵ atoms (ii) Number of He atoms = $\frac{\text{Given mass in } u}{\text{Atomic mass in } u} = \frac{52u}{4u} = 13$ atoms (iii) Number of He atoms = $\frac{m}{M} \times N_o = \frac{52}{4} \times 6.022 \times 10^{23} = 13 \times 6.022 \times 10^{23}$ = 78.286 × 10²³ = 7.83 × 10²⁴ atoms.

11. Mass of 5 moles of Cl_2 = Number of moles × Molar mass = 5 × (35.5 × 2) = 5 × 71 = 355 g.

12. (*i*) 1 mole of N atoms = 14 g

0.2 mol of N atoms = $14 \times 0.2 = 2.8$ g

(*ii*) Mass of 1.4 mol of Al atoms = No. of moles \times Atomic mass = $1.4 \times 27 = 37.8$ g

(*iii*) Mass of 0.5 mole of HCl = No. of moles × Molecular mass = $0.5 \times 36.5 = 18.25$ g

IMPORTANT SYMBOLS OF ELEMENTS

Element	Symbol	Element	Symbol Element		Symbol	Element	Symbol	Element	Element Symbol		Symbol
1. Hydrogen	Н	8. Oxygen	0	15. Phosphorus	Р	Barium	Ва	Iodine	Ι	Bromine	Br
2. Helium	He	9. Fluorine	F	16. Sulphur	S	Cobalt	Co	Lead	Pb	Selenium	Se
3. Lithium	Li	10. Neon	Ne	17. Chlorine	Cl	Nickel	Ni	Silver	Ag	Gallium	Ga
4. Beryllium	Be	11. Sodium	Na	18. Argon	Ar	Copper	Cu	Tin	Sn	Scandium	Sc
5. Boron	В	12. Magnesium	Mg	19. Potassium	Κ	Zinc	Zn	Chromium	Cr	Germanium	Ge
6. Carbon	С	13. Aluminium	Al	20. Calcium	Ca	Iron	Fe	Manganese	Mn		
7. Nitrogen	N	14. Silicon	Si								

IMPORTANT FORMULAE

Formulae of Binary Compounds

Ammonia	$\rm NH_3$	Hydrogen Sulphide	H_2S	Nitrogen pentoxide	N_2O_5	Methane	CH_4	Glucose	$\mathrm{C}_{6}\mathrm{H}_{12}\mathrm{O}_{6}$
Carbon dioxide	CO_2	Water	H_2O	Phosphorus pentoxide	P_2O_5	Carbon disulphide	CS_2	Urea	NH ₂ CONH ₂
Carbon monoxide	CO	Phosphine	PH_3	Phosphorus pentachloride	PCl_5	Ethylalcohol	C_2H_5OH	Cane sugar	$C_{12}H_{22}O_{11}$
Nitrogen monoxide	NO	Sulphur trioxide	SO_3	Carbontetra chloride	CCl_4	Methyl alcohol	CH ₃ OH	Hydrogen Cyanide	HCN
Nitrogen dioxide	NO_2	Sulphuric acid	H_2SO_4	Chloro methane	CH ₃ Cl	Benzene	C_6H_6	Urea	NH ₂ CONH ₂
Nitrogen trioxide	N ₂ O ₃	Nitric acid	HNO_3	Chloroform	CHCl_3	Ethane	C_2H_6	Butane	C_4H_{10}

Pb ²⁺	$PbCl_2$	$PbBr_2$	PbI_2	$PbCO_3$	$Pb(HCO_3)_2$	$PbSO_4$	$PbSO_3$	Pb_3N_2	Pb_3P_2	$Pb_3(PO_4)_2$	PbS	PbO	$Pb(OH)_2$	$Pb(HSO_4)_3$	$Pb(NO_2)_2$	$Pb(CN)_2$	(CH ₃ COO) ₂ Pb	$Pb(NO_3)_2$	PbF_2
Fe ³⁺	$FeCl_3$	${\rm FeBr}_3$	FeI_3	$Fe_2(CO_3)_3$	$Fe(HCO_3)_3$	$\mathrm{Fe}_2(\mathrm{SO}_4)_3$	$\operatorname{Fe}_2(\operatorname{SO}_3)_3$	FeN	FeP	FePO_4	${\rm Fe_2S_3}$	$\mathrm{Fe_2O_3}$	$Fe(OH)_3$	$\mathrm{Fe}(\mathrm{HSO}_4)_3$	$Fe(NO_2)_3$	$Fe(CN)_3$	Fe(COOCH ₃) ₃	$Fe(NO_3)_3$	${\rm FeF}_3$
Fe ²⁺	FeCl_2	${\rm FeBr}_2$	FeI_2	$FeCO_3$	$Fe(HCO_3)_2$	${\rm FeSO}_4$	${\rm FeSO}_3$	$\mathrm{Fe_3N_2}$	${\rm Fe_3P_2}$	${\rm Fe}_3({\rm PO}_4)_2$	FeS	FeO	$Fe(OH)_2$	${\rm Fe}({\rm HSO}_4)_2$	$Fe(NO_2)_2$	$Fe(CN)_2$	$Fe(COOCH_3)_2$	$Fe(NO_3)_2$	FeF_2
Zn^{2+}	$ZnCl_2$	ZnBr_2	ZnI_2	$ZnCO_3$	$Zn(HCO_3)_2$	$ m ZnSO_4$	$ m ZnSO_3$	$\mathrm{Zn}_3\mathrm{N}_2$	$\mathrm{Zn}_3\mathrm{P}_2$	$\mathrm{Zn}_3(\mathrm{PO}_4)_2$	ZnS	ZnO	$\operatorname{Zn}(\operatorname{OH})_2$	${\rm Zn}({\rm HSO_4})_2$	${ m Zn}({ m NO}_2)_2$	$Zn(CN)_2$	$(CH_3COO)_2Zn$	$\operatorname{Zn}(\operatorname{NO}_3)_2$	ZnF_2
Cu ²⁺	CuCl ₂	$CuBr_2$	CuI_2	$CuCO_3$	$Cu(HCO_3)_2$	$CuSO_4$	$CuSO_3$	Cu_3N_2	$\mathrm{Cu}_3\mathrm{P}_2$	$Cu_3(PO_2)_2$	CuS	CuO	$Cu(OH)_2$	$Cu(HSO_4)_2$	$Cu(NO_2)_2$	$Cu(CN)_2$	$(CH_3COO)_2Cu$	$Cu(NO_3)_2$	CuF_2
Cr^{3+}	CrCl ₃	$CrBr_3$	CrI_3	$Cr_2(CO_3)_3$	Cr(HCO ₃) ₃	$Cr_2(SO_4)_3$	$Cr_2(SO_3)_3$	CrN	CrP	$CrPO_4$	Cr_2S_3	Cr_2O_3	Cr(OH) ₃	$Cr(HSO_4)_3$	$Cr(NO_2)_3$	$Cr(CN)_3$	(CH ₃ COO) ₃ Cr	Cr(NO ₃) ₃	CrF_3
A1 ³⁺	AlCl ₃	$AlBr_3$	AII_3	$\mathrm{Al}_2(\mathrm{CO}_3)_3$	Al(HCO ₃) ₃	$\mathrm{Al}_2(\mathrm{SO}_2)_3$	$\mathrm{Al}_2(\mathrm{SO}_3)_3$	AIN	AIP	$AIPO_4$	$\mathrm{Al}_2\mathrm{S}_3$	Al_2O_3	$Al(OH)_3$	$Al(HSO_4)_3$	$Al(NO_2)_3$	Al(CN) ₃	(CH ₃ COO) ₃ A1	$AI(NO_3)_3$	AIF_3
${ m Mg}^{2+}$	$MgCl_2$	MgBr_2	MgI_2	$MgCO_3$	$Mg(HCO_3)_2$	${ m MgSO}_4$	${ m MgSO}_3$	${ m Mg_3N_2}$	${ m Mg_3P_2}$	${ m Mg_3(PO_4)_2}$	MgS	MgO	$Mg(OH)_2$	$Mg(HSO_4)_2$	$Mg(NO_2)_2$	$Mg(CN)_2$	$(\mathrm{CH}_3\mathrm{COO})_2\mathrm{Mg}$	$Mg(NO_3)_2$	MgF_2
Ca ²⁺	$CaCl_2$	CaBr_2	CaI_2	$CaCO_3$	Ca(HCO ₃) ₂	CaSO_4	$CaSO_3$	$\mathrm{Ca}_3\mathrm{N}_2$	$\mathrm{Ca}_3\mathrm{P}_2$	$Ca_3(PO_4)_2$	c_{aS}	CaO	$Ca(OH)_2$	$Ca(HSO_4)_2$	$Ca(NO_2)_2$	$Ca(CN)_2$	(CH ₃ COO) ₂ Ca	$Ca(NO_3)_2$	CaF_2
K ⁺	KCI	KBr	KI	K_2CO_3	$KHCO_3$	$ m K_2SO_4$	$ m K_2SO_3$	$ m K_3N$	K_3P	$\mathrm{K}_3\mathrm{PO}_4$	$ m K_2S$	K_2O	КОН	KHSO_4	KNO_2	KCN	CH_3COOK	KNO_3	KF
Na ⁺	NaCl	NaBr	NaI	$\mathrm{Na_2CO_3}$	$NaHCO_3$	$\mathrm{Na_2SO_4}$	$\mathrm{Na_2SO_3}$	$\mathrm{Na}_{3}\mathrm{N}$	$\mathrm{Na}_3\mathrm{P}$	$\mathrm{Na_3PO_4}$	$\mathrm{Na}_2\mathrm{S}$	Na_2O	NaOH	NaHSO_4	$NaNO_2$	NaCN	CH ₃ COONa	$NaNO_3$	NaF
Cations Anions	Cl ⁻	${\rm Br}^{-}$	Γ-	CO_3^{2-}	HCO_{3}^{-}	SO_4^{2-}	SO_3^{2-}	${ m N}^{3-}$	P^{3-}	PO_4^{3-}	S^{2-}	0^{2-}	-HO	HSO_4^-	NO_2^-	CN^{-}	CH_3COO^-	NO_3^-	F

Formula of Ionic Compounds

COMMON ERRORS

Errors	Corrections
• Children usually write wrong symbols of Tin, Antimony, Silver, Gold, Lead, Tungsten.	Tin (Sn), Antimony (Sb), Silver (Ag), Gold (Au), Lead (Pb), Tungsten (W).
• Children write wrong formulae of a compound.	Learn all the valencies of elements and radicals.
• Children do not write formula in numerical problem.	See Correct Formula must be written before starting a numerical.
• Children do not differentiate between 'u' and 'g'.	The Mass of 1 atom is in u . Atomic mass in grams represents mass of 6.022×10^{23} atoms.
Children solve numericals of mole concept wrongly.	 Read the question carefully and find out what is given and what is to be calculated? Which formula will be useful? Apply the formula and do the correct calculation.
• Children do not write units in answer.	🖙 Units must be written.
• Children calculate wrong molecular mass of a compound.	Count the total number of atoms carefully and then multiply them carefully with atomic mass.
• In $CuSO_4.5H_2O$, children multiply mass of $CuSO_4$ with mass of $5H_2O$.	$^{\hbox{\tiny ISP}}$ Mass of $CuSO_4$ needs to be added to mass of $5H_2O.$
Children get confused in mole concept.	^{ISF} Understand each and every formula carefully and apply them at suitable place.

REVISION CHART

